PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magneto-optical Trap: Fundamentals and Realization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Symposium on cold atoms and laser spectroscopy, 22th-27th October 2009, Vinh, Vietnam.
Języki publikacji
EN
Abstrakty
EN
Principles of laser cooling and trapping of atoms with regard to the magneto-optical trap (MOT) are described. Some details of the MOT and the accompanying measuring system, both constructed at the Institute of Physics, PAS in Warsaw, are given. Two examples of experimental results are shown.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46, 02-668 Warszawa, Poland, krkowal@ifpan.edu.pl
Bibliografia
  • [1] E.A. Cornell, C.E. Wieman, Nobel Lecture: Bose-Einstein Condensation in a Dilute Gas, the First 70 Years and Some Recent Experiments. Rev. Mod. Phys. 74, 875-893 (2002).
  • [2] V.I. Balykin, V.G. Minogin, V.S. Letokhov, Electromagnetic trapping of cold atoms. Rep. Prog. Phys. 63, 1429-1510 (2000).
  • [3] T.W. Hänsch, A. Schawlow, Cooling of gases by laser radiation. Opt. Comm. 13, 68-71 (1975).
  • [4] W. Phillips, H. Metcalf, Laser Deceleration of an Atomic Beam. Phys. Rev. Lett. 48, 596-599 (1982).
  • [5] S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55 (1), 48-51 (1985).
  • [6] E.L. Raab, M. Prentiss, A. Cable, S. Chu, D. Pritchard, Trapping of Neutral Sodium Atoms with Radiation Pressure. Phys. Rev. Lett. 59, 2631 (1987).
  • [7] C.N. Cohen-Tannoudji, Manipulating atoms with photons, Nobel Prize Lecture. 8th December 1997.
  • [8] C. Monroe, W. Swann, H. Robinson, C. Wieman, Very Cold Trapped Atoms in a Vapor Cell. Phys. Rev. Lett. 65, 1571-1574 (1990).
  • [9] J. Zachorowski, T. Pałasz, W. Gawlik, Magneto-Optical Trap for Rubidium Atoms. Opt. Appl. 28, 239 (1998).
  • [10] S.G. Miranda, S.R. Muniz, G.D. Telles, L.G. Marcassa, K. Helmerson, V.S. Bagnato, Dark-spot atomic-beam slowing for on-axis loading of traps. Phys. Rev. A 59, 882 (1999).
  • [11] K. Dieckmann, R.J.C. Spreeuw, M. Weidemüller, J.T.M. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev A 59, 3891 (1998).
  • [12] J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, T. Pfau, Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap. Phys. Rev A 66, 023410 (2002).
  • [13] M.S. Santos, P. Nussenzveig, L.G. Marcassa, K. Helmerson, J. Flemming, S.C. Zilio, V.S. Bagnato, Simultaneous trapping of two different atomic species in a vaporcell magneto-optical trap. Phys. Rev. A 52, 4340 (1995).
  • [14] J. Goldwin, S.B. Papp, B. DeMarco, D.S. Jin, Two-species magneto-optical trap with 40K and 87Rb. Phys. Rev. A 65, 021402 (2002).
  • [15] M.O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, C. Salomon, Simultaneous magneto-optical trapping of two lithium isotopes. Phys. Rev. A 61, 011403 (1999).
  • [16] H. Jelassi, B. Viaris de Lesegno, L. Pruvost, Photoassociation spectroscopy of 87Rb2 (5S1/2+5P1/2) 0g long-range molecular states: Analysis by Lu-Fano graph and improved LeRoy-Bernstein formula. Phys. Rev. A 73, 032501 (2006).
  • [17] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269 (1995).
  • [18] C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev. Lett. 78, 586 (1997).
  • [19] F. Bylicki, W. Gawlik, W. Jastrzębski, A. Noga, J. Szczepkowski, M. Witkowski, J. Zachorowski, M. Zawada, Studies of the Hydrodynamic Properties of Bose-Einstein Condensate of 87Rb Atoms in a Magnetic Trap. Acta Phys. Pol. A 113, 691 (2008).
  • [20] W.D. Phillips, Laser cooling and trapping of neutral atoms. Rev. of Mod. Phys. 70, 721-741 (1998).
  • [21] M. Gajda, J. Mostowski, 3-Dimensional Theory of the Magnetooptical Trap-Doppler Cooling in the Low-Intensity Limit. Phys Rev A, 49 (6), 4864-4875 (1994).
  • [22] K. Kowalski, E. Dimova-Arnaudova, K. Fronc, S. Gateva, M. Głódź, L. Lis, L. Petrov, J. Szonert, A system for magnetooptical cooling and trapping of Rb atoms. Opt. Appl. 36, 559-567 (2006).
  • [23] S. Stenholm, The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699-739 (1986).
  • [24] H. Metcalf, P. van der Straten, Cooling and trapping of neutral atoms. Phys. Rep. 244, 204-286, (1994).
  • [25] H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping of atoms. J. Opt. Soc. Am. B 20, 887-908 (2003).
  • [26] H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping. Springer, New York (1999).
  • [27] C.S. Adams, E. Riis, Laser cooling and trapping of neutral atoms. Progr. in Quant. Electr, 21 (1), 1-79 (1997).
  • [28] A. Ashkin, Acceleration and Trapping of particles by Radiation Pressure. Phys. Rev. Lett. 24, 156 (1970).
  • [29] A. Ashkin, J.P. Gordon, Stability of radiation-pressure particle traps: an optical Earnshaw theorem. Opt. Lett. 8, 511-513 (1983).
  • [30] V. Zehnle, Doppler cooling to the recoil limit by means of sharp atomic transitions with controlled quenching. J. Opt. Soc. Am. B 20, 931 (2003).
  • [31] P.D. Lett, R.N. Watts, Ch. I. Westbrook, W.D. Phillips, P.L. Gould, H. Metcalf, Observation of Atoms Laser Cooled below the Doppler Limit. Phys. Rev. Lett. 61 (2)169-172 (1988).
  • [32] J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients – simple theoretical models. J. Opt. Soc. Am. B 6, 2023-2045 (1989).
  • [33] P.J. Ungar, D.S. Weiss, E. Riis, S. Chu, Optical Molasses and Multilevel Atoms – Theory. J. Opt. Soc. Am. B 6, 2058-2071 (1989).
  • [34] R. Maruyama, R.H. Wynar, M.V. Romalis, A. Andalkar, M.D. Swallows, C.E. Pearson, E.N. Fortson, Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap. Phys. Rev. A 68, 011403(1-4) (R) (2003).
  • [35] M. Kasevich, S. Chu, Laser Cooling Below a Photon Recoil With 3-Level Atoms. Phys. Rev. Let. 69, 1741-1744 (1992).
  • [36] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji, Laser Cooling Below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping. Phys. Rev. Let. 61, 826 (1988).
  • [37] K.B. MacAdam, A. Steinbach, C.E. Wieman, A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 60, 1098 (1992).
  • [38] C.J. Hawthorn, K.P. Weber, R.E. Scholten, Littrow configuration tunable external cavity diode laser with fixed direction output beam. Rev. Sci. Instrum. 72, 4477 (2001).
  • [39] X. Wang, X. Chen, J. Hou, D. Yang, Y. Wang, Side-mode injection locking characteristics of 150 mW AlGaAs semiconductor lasers. Opt. Comm. 178, 165 (2000).
  • [40] V.V. Yashchuk, D. Budker, J.R. Davis, Laser frequency stabilization using linear magneto-optics. Rev. of Sci. Instr. 71, 341 (2000).
  • [41] M. Mitsunaga, T. Mukai, K.Watanabe, T. Mukai, Dressed atom spectroscopy of cold Cs atoms. J. Opt. Soc. Am. B13, 2696-2700 (1996).
  • [42] Y.-Ch. Chen, Y.-W. Chen, J.-J. Su, J.-Y. Huang, I.A. Yu, Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations. Phys. Rev. A63, 0438089 (1-11) (2001).
  • [43] K. Kowalski, M. Głódź, J. Szonert, to be published.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0028-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.