Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
The Workshop on Current Problems in Physics: Zielona Góra – Lviv, Zielona Góra,19-21 October 2009
Języki publikacji
Abstrakty
An effect generated by the nonexponential behavior of the survival amplitude of an unstable state in the long time region is considered. We find that the instantaneous energy of the unstable state for a large class of models of unstable states tends to the minimal energy of the system epsilon min as t rightwards arrow infinity which is much smaller than the energy of this state for t of the order of the lifetime of the considered state. Analyzing the transition time region between the exponential and non-exponential form of the survival amplitude, we find that the instantaneous energy of the considered unstable state can take large values, much larger than the energy of this state for t from the exponential time region. Taking into account results obtained for a considered model, it is hypothesized that this purely quantum mechanical effect may be responsible for the properties of broad resonances such as sigma meson as well as having astrophysical and cosmological consequences.
Słowa kluczowe
Rocznik
Tom
Strony
201--205
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
autor
- University of Zielona Góra, Institute of Physics, ul. Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland, K.Urbanowski@proton.if.uz.zgora.pl
Bibliografia
- [1] S. Krylov, V.A. Fock, Zh. Eksp. Teor. Fiz. 17, 93 (1947).
- [2] L. Fonda, G.C. Ghirardii, A. Rimini, Rep. on Prog. in Phys. 41, 587 (1978).
- [3] L.A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957), [Sov. Phys. – JETP 6, 1053 (1958)].
- [4] R.E.A.C. Paley, N. Wiener, Fourier transforms in the complex domain. American Mathematical Society, New York (1934).
- [5] C. Rothe, S.I. Hintschich, A.P. Monkman, Phys. Rev. Lett. 96, 163601 (2006).
- [6] K. Urbanowski, Phys. Rev. A 50, 2847 (1994).
- [7] K. Urbanowski, Cent. Eur. J. Phys. 7 (2009), DOI:10.2478/s11534– 009–0053–5.
- [8] K. Urbanowski, Eur. Phys. J. D 54, 25 (2009).
- [9] K.M. Sluis, E.A. Gislason, Phys. Rev. A 43, 4581 (1991).
- [10] Handbook of Mathematical Functions, Natl. Bur. Stand. Appl. Math. Ser. No 55, eds. M. Abramowitz, I.A. Stegun (U.S. GPO, Washington, D.C., 1964).
- [11] N.G. Kelkar, M. Nowakowski, K.P. Khemchadani, Phys.Rev. C 70, 024601 (2004).
- [12] C. Amsler at al., Phys. Lett. B 667, 1 (2008).
- [13] M. Nowakowski, N.G. Kelkar, Nishiharima 2004, Penataquark – Proceedings of International Workshop on PENATAQUARK 04, Spring – 8, Hyogo, Japan, 23-24 July 2004, pp. 182-189; arXiv: hep–ph/0411317.
- [14] M. Nowakowski, N.G. Kelkar, AIP Conf. Proc. 1030, 250-255 (2008); ArXiv:0807.5103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0028-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.