PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Note on Scattering in Deformed Space with Minimal Lenght

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
The Workshop on Current Problems in Physics: Zielona Góra – Lviv, Zielona Góra,19-21 October 2009
Języki publikacji
EN
Abstrakty
EN
We consider the elastic scattering in deformed space with minimal length. We give the basic relation for the elastic scattering in deformed space. We also investigate the partial wave method in deformed space. It is shown that the relations for the scattering amplitude and cross-section formally coincides with ordinary ones.
Twórcy
  • Department for Theoretical Physics, Ivan Franko National University of Lviv 12 Drahomanov St., Lviv, UA-79005, Ukraine, mykola@ktf.franko.lviv.ua
Bibliografia
  • [1] D.J. Gross, P.F. Mende, String theory beyond the Planck scale. Nucl. Phys. B 303, 407-454 (1988).
  • [2] M. Maggiore, A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65-69 (1993).
  • [3] E. Witten, Reflections on the Fate of Spacetime. Phys. Today 49, 24 (1996).
  • [4] A. Kempf, Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483-4496 (1994).
  • [5] A. Kempf, G. Mangano, R.B. Mann, Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108-1118 (1995).
  • [6] A. Kempf, On quantum field theory with nonzero minimal uncertainties in positions and momenta. J. Math. Phys. 38, 1347-1372 (1997).
  • [7] A. Kempf, Non-pointlike particles in harmonic oscillators. J. Phys. A 30, 2093-2101 (1997).
  • [8] H.S. Snyder, Quantized Space-Time. Phys. Rev. 71, 38-41 (1947).
  • [9] C. Quesne, V.M. Tkachuk, Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework. J. Phys. A 36, 10373-10389 (2003).
  • [10] C. Quesne, V.M. Tkachuk, More on a SUSYQM approach to the harmonic oscillator with nonzero minimal uncertainties in position and/or momentum. J. Phys. A 37, 10095-10113 (2004).
  • [11] L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (8 pages) (2002).
  • [12] I. Dadić, L. Jonke, S. Meljanac, Harmonic oscillator with minimal length uncertainty relations and ladder operators. Phys. Rev. D 67, 087701 (4 pages) (2003).
  • [13] C. Quesne, V.M. Tkachuk, Dirac oscillator with nonzero minimal uncertainty in position. J. Phys. A 38, 1747-1765 (2005).
  • [14] T.V. Fityo, I.O. Vakarchuk, V.M. Tkachuk, One-dimensional Coulomb-like problem in deformed space with minimal lengt. J. Phys. A 39, 2143-2149 (2006).
  • [15] F. Brau, Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691-7696 (1999).
  • [16] S. Benczik, L.N. Chang, D. Minic, T. Takeuchi, Hydrogenatom spectrum under a minimal-length hypothesis. Phys. Rev. A 72, 012104 (4 pages) (2005).
  • [17] M.M. Stetsko, V.M. Tkachuk, Perturbation hydrogen-atom spectrum in deformed space with minimal length. Phys. Rev. A 74, 012101 (5 pages) (2006).
  • [18] M. M. Stetsko, Corrections to the ns levels of the hydrogen atom in deformed space with minimal length. Phys. Rev. A 74, 062105 (5 pages) (2006); M.M. Stetsko, Erratum: Corrections to the ns levels of the hydrogen atom in deformed space with minimal length. [Phys. Rev. A 74, 062105 (2006)], Phys. Rev. A 78, 029907 (1 page) (2008).
  • [19] M.M. Stetsko, V.M. Tkachuk, Scattering problem in deformed space with minimal length. Phys. Rev. A 76, 012707, (7 pages) (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0028-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.