PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards the Modelling of Anisotropic Solids

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the material model for metals and its numerical applications are presented. The material model is stated in terms of continuum mechanics, in the framework of the thermodynamical theory of viscoplasticity. The fundamental achievement is that the constitutive relation includes a description of anisotropy of metal microstructure. Such approach gives qualitatively and quantitatively new results compared with the existing models because it is possible to trace the directions of softening and predict a damage path in process time. Numerical examples comprise full spatial modelling for HSLA-65 steel in adiabatic conditions (the analysis of anisotropic bodies can be led only on 3D models) including: tension of sheet steel and twisting of thin walled tube. During analyses strain rates of order 104-107 s–1 are observed and the process time up to full damage (loss of continuity in the localisation zone) is around 100-300 mi s.
Słowa kluczowe
Twórcy
autor
autor
  • Poznan University of Technology Faculty of Civil and Environmental Engineering Institute of Structural Engineering, Division of Computer Aided Design ul. Piotrowo 5, 60-965 Poznań, Poland, Adam.Glema@put.poznan.pl
Bibliografia
  • [1] Abaqus Version 6.8 Documentation Collection, 2008.
  • [2] R.K. Abu Al-Rub, G.Z. Voyiadjis, A finite strain plasticdamage model for high velocity impact using combined viscosity and gradient localization limiters: Part I –theoretical formulation. International Journal of Damage Mechanics 15 (4), 293-334 (2006).
  • [3] K. Cho, Y.C. Chi, J. Duffy, Microscopic observations of adiabatic shear bands in the three different steels. Technical Report DAAL03-88-K-0015/3, Brown University Report, September 1988.
  • [4] W. Dornowski, Influence of finite deformations on the growth mechanism of microvoids contained in structural metals. Archives of Mechanics 51 (1), 71-86 (1999).
  • [5] W. Dornowski, P. Perzyna, Analysis of the influence of various effects on cycle fatigue damage in dynamic process. Archive of Applied Mechanics 72, 418-438 (2002).
  • [6] W. Dornowski, P. Perzyna, Localized fracture phenomena in thermo-viscoplastic flow process under cyclic dynamic loadings. Acta Mechanica 155, 233-255 (2002).
  • [7] W. Dornowski, P. Perzyna, Numerical investigation of localized fracture phenomena in inelastic solids. Foundations of Civil and Environmental Engineering 7, 79-116 (2006).
  • [8] A. Glema, Analiza natury falowej zjawiska lokalizacji odkształceń plastycznych w ciałach stałych, vol. 379 of Rozprawy. Publishing House of Poznan University of Technology, 2004 (in Polish).
  • [9] A. Glema, T. Łodygowski, P. Perzyna, Numerical investigation of dynamic shear bands in inelastic solids as a problem of mesomechanics. Computational Mechanics 41 (2), 219-229 (2008).
  • [10] A. Glema, T. Łodygowski, P. Perzyna, W. Sumelka, Constitutive anisotropy induced by plastic strain localization. In 35th Solid Mechanics Conference, pp. 139-140, Kraków, Poland, September 4-8 2006.
  • [11] A. Glema, T. Łodygowski, W. Sumelka, P. Perzyna, The numerical analysis of the intrinsic anisotropic microdamage evolution in elastoviscoplastic solids. International Journal of Damage Mechanics 18 (3), 205-231 (2009).
  • [12] H.A. Grebe, H.-R. Pak, M.A. Meyers, Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy. Metallurgical and Materials Transactions A 16 (5), 761-775 (1985).
  • [13] J.R. Klepaczko, Constitutive relations in dynamic plasticity, pure metals and alloys. Advances in constitutive relations applied in computer codes. CISM, Udine, Italy, July 23-27, 2007.
  • [14] E.H. Lee, Elastic-plastic deformation at finite strain. ASME Journal of Applied Mechanics 36, 1-6 (1969).
  • [15] J.E. Marsden, T.J.H Hughes, Mathematical Foundations of Elasticity. Prentice-Hall, New Jersey, 1983.
  • [16] R. Narayanasamy, N.L. Parthasarathi, C.S. Narayanan, Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions. Materials and Design 30, 1310-1324 (2009).
  • [17] S. Nemat-Nasser, W.-G. Guo, Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials 37, 379-405 (2005).
  • [18] J.A. Nemes, J. Eftis, Several features of a viscoplastic study of plate-impact spallation with multidimensional strain. Computers and Structures 38 (3), 317-328 (1991).
  • [19] J.A. Nemes, J. Eftis, Constitutive modelling of the dynamic fracture of smooth tensile bars. International Journal of Plasticity 9 (2), 243-270 (1993).
  • [20] T. Łodygowski, On avoiding of spurious mesh sensitivity in numerical analysis of plastic strain localization. Computer Assisted Mechanics and Engineering Sciences 2, 231-248 (1995).
  • [21] T. Łodygowski, Theoretical and numerical aspects of plastic strain localization, vol. 312 of D.Sc. Thesis. Publishing House of Poznan University of Technology, 1996.
  • [22] T. Łodygowski, A. Glema, W. Sumelka, Anisotropy induced by evolution of microstructure in ductile material. In 8th World Congress on Computational Mechanics (WCCM8), 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy, June 30-July 5, 2008.
  • [23] T. Łodygowski, P. Perzyna, Localized fracture of inelastic polycrystalline solids under dynamic loading process. International Journal Damage Mechanics 6, 364-407 (1997).
  • [24] T. Łodygowski, P. Perzyna, Numerical modelling of localized fracture of inelastic solids in dynamic loading process. International Journal for Numerical Methods in Engineering 40, 4137-4158 (1997).
  • [25] T. Łodygowski, P. Perzyna, M. Lengnick, E. Stein, Viscoplastic numerical analysis of dynamic plastic shear localization for a ductile material. Archives of Mechanics, 46 (4), 541-557 (1994).
  • [26] R.B. Pęcherski, W.K. Nowacki, Z. Nowak, P Perzyna, Effect of strain rate on ductile fracture. A new methodology. In Workshop, Dynamic Behaviour of Materials, In memory of our Friend and Colleague Prof. J.R. Klepaczko, pp. 65-73, Metz, France, May 13-15, 2009.
  • [27] P. Perzyna, The constitutive equations for rate sensitive plastic materials. Quarterly of Applied Mathematics 20, 321-332 (1963).
  • [28] P. Perzyna, Fundamental problems in viscoplasticity. Advances in Applied Mechanics 9, 243-377 (1966).
  • [29] P. Perzyna, Constitutive modelling for brittle dynamic fracture in dissipative solids. Archives of Mechanics 38, 725-738 (1986).
  • [30] P. Perzyna, Internal state variable description of dynamic fracture of ductile solids. International Journal of Solids and Structures 22, 797-818 (1986).
  • [31] P. Perzyna, Instability phenomena and adiabatic shear band localization in thermoplastic flow process. Acta Mechanica 106, 173-205 (1994).
  • [32] P. Perzyna, Interactions of elastic-viscoplastic waves and localization phenomena in solids. In: J.L. Wegner, F.R. Norwood, editors, IUTAM Symposium on Nonlinear Waves in Solids, pp. 114-121, Victoria, Canada, August 15-20, 1995.
  • [33] P. Perzyna, Constitutive modelling of dissipative solids for localization and fracture. In: Perzyna P., editor, Localization and fracture phenomena in inelastic solids, chapter 3, pp. 99-241. Springer, 1998. (CISM course and lectures –No. 386).
  • [34] P. Perzyna, The thermodynamical theory of elastoviscoplasticity. Engineering Transactions 53, 235-316 (2005).
  • [35] P. Perzyna, The thermodynamical theory of elastoviscoplasticity accounting for microshear banding and induced anisotropy effects. In 35th Solid Mechanics Conference, pp. 35-36, Kraków, Poland, September 4-8, 2006.
  • [36] P. Perzyna, The thermodynamical theory of elastoviscoplasticity accounting for microshear banding and induced anisotropy effects. Mechanics 27 (1), 25-42 (2008).
  • [37] A. Rusinek, J.R. Klepaczko, Experiments on heat generated during plastic deformation and stored energy for trip steels. Materials and Design 30 (1), 35-48 (2009).
  • [38] A. Rusinek, J.A. Rodriguez-Martinez, J.R. Klepaczko, R.B. Pęcherski, Analysis of thermo-visco-plastic behaviour of six high strength steels. Materials and Design, 30 (5), 1748-1761 (2009).
  • [39] L. Seaman, D.R. Curran, D.A. Shockey, Computational models for ductile and brittle fracture. Journal of Applied Physics 47 (11), 4814-4826 (1976).
  • [40] S. Shima, M. Oyane, Plasticity for porous solids. International Journal of Mechanical Sciences 18, 285-291 (1976).
  • [41] W. Sumelka, The Constitutive Model of the Anisotropy Evolution for Metals with Microstructural Defects. Publishing House of Poznan University of Technology, Poznań, Poland, 2009.
  • [42] W. Sumelka, A. Glema, The evolution of microvoids in elastic solids. In: 17th International Conference on Computer Methods in Mechanics CMM-2007, 347-348, Łódź-Spała, Poland, June 19-22, 2007.
  • [43] W. Sumelka, A. Glema, Theoretical and computational aspects of implementation of anisotropic constitute model for metals with microstructural defects. In: 18th Int. Conf.on Computer Methods in Mechanics CMM-2009, pp. 451-452, Zielona Góra, Poland, 18-21 May, 2009.
  • [44] C. Truesdell, W. Noll, The non-linear field theories of mechanics, volume in: Handbuch der Physik III/3. Springer-Verlag, Berlin, S: Flügge, edition, 1965.
  • [45] G.Z. Voyiadjis, R.K. Abu Al-Rub, A finite strain plastic damage model for high velocity impacts using combined viscosity and gradient localization limiters: Part II. – Numerical aspects and simulations. International Journal of Damage Mechanics 15 (4), 335-373 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0027-0086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.