PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular Perspective Review of Biochemical Role of Nucleobases Modified by Oxidative Stress

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous damages to cellular DNA are imposed by oxidative stress. Formation of stable products resulting from oxidation of nucleobases is one of many observed consequences. The oxidized species constitute a class of heterocyclic compounds with great diversities of physicochemical properties. Modified nucleosides significantly differ from their canonical protoplasts by tautomeric equilibriums, protolytic properties in the gas phase and water solution, they have altered oxidative susceptibility and N-glycosidic bond stabilities. However, what is most important, they have overwhelmingly altered pairing properties, which are directly responsible for observed cytotoxic properties of these lesions. Besides, since many analogues are structurally different with respect to canonical bases their presence in DNA must impose many energetic, structural and dynamic modifications. These aspect are reviewed as fruits of project no 39 supported by computational grant in Poznań Supercomputing and Networking Center (PSNC, Poland).
Twórcy
autor
  • Department of Physical Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Kurpińskiego 5, 85-950 Bydgoszcz, Poland, piotr.cysewski@cm.umk.pl
Bibliografia
  • [1] C. von Sonntag, Free-Radical-Induced DNA Damage and Its Repair, A Chemical Perspective. Springer-Verlag, Berlin, Heidelberg, New York 2006.
  • [2] B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine. Clarendon Press, Oxford 1999.
  • [3] C. Rice-Evans, B. Halliwell, G.G. Lunt, Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives. Portland Press, London 1995.
  • [4] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J. 17, 1195-1214 (2003).
  • [5] M. Genestra, Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell. Signal. 19, 1807-1819 (2007).
  • [6] M. Dizdaroglu, Chemical determination of free radical induced damage to DNA, Free Radic. Biol. Med. 10, 225-242 (1991).
  • [7] M. Dizdaroglu, Oxidative damage to DNA in mammalian chromatin. Mutat. Res. 275, 331-342 (1992).
  • [8] M. Dizdaroglu, Mechanisms of free radical damage to DNA. in: O.I. Aruoma, B. Halliwell (ed) DNA and free radicals: techniques, mechanisms and applications. St. Lucia: OICA International, 1998.
  • [9] B. Halliwell, O.I. Aruoma, DNA damage by oxygen-derived species: its mechanism, and measurement using chromatographic methods. in Molecular Biology of Free Radical Scavenging Systems (ed. J.G. Scandalios) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1992.
  • [10] R. Oliński, D. Gackowski, R. Rozalski, M. Foksinski, K. Bialkowski, Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development? Mutat. Res. 531, 177-190 (2003).
  • [11] K. Kohda, M. Tada, A. Hakura, H. Kasai, Y. Kawazoe, Formation of 8-hydroxyguanine residues in DNA treated with 4-hydroxyaminoquinoline 1-oxide and its related compounds in the presence of seryl-AMP. Biochem. Biophys. Res. Commun. 149 (3), 1141-1148 (1987).
  • [12] B. Commoner, J. Townsend, G.E. Pake, Free radicals in biological materials. Nature 174, 689-691 (1954).
  • [13] S. Fu, R. Dean, M. Southan, R. Truscott, The hydroxyl radical in lens nuclear cataractogenesis. J. Biol. Med. 273, 28603-28609 (1998).
  • [14] H. Kasai, P.F. Crain, Y. Kuchino, S. Nishimura, A. Ootysuyama, H. Tanooka, Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidences for its repair. Carcinogen. 7, 1849-1851 (1986).
  • [15] S. Akasaka, K. Takimoto, K. Yamamoto, G:C-->T:A and G:C-->C:G transversions are the predominant spontaneous mutations in the Escherichia coli supF gene: an improved lacZ(am) E. coli host designed for assaying pZ189 supF mutational specificity. Mol. Gen. Genet. 235, 173-178 (1992).
  • [16] A.R. Collins, C. Gedik, S. Wood, A. White, J. Dubois, P. Duez, J-F. Rees, R. Legall, L. Degand, S. Loft, A. Jensen, H. Poulsen, A. Weimann, B.R. Jensen, J. Cadet, T. Douki, J-L. Ravanat, H. Faure, M. Tripier, I. Morel, O. Sergent, P. Cillard, B. Morin, B. Epe, N. Phoa, A. Hartwig, A. Pelzer, P. Dolara, C. Casalini, F. Guglielmi, C. Luceri, H. Kasai, R. Kido, R. Olinski, K. Bialkowski, Z, Duračková, L. Hlinčiková, P. Korytar, M, Dušinská, C. Mislanová, J. Viña, A. Lloret, L. Möller, T. Hofer, E. Gremaud, L. Fay, R. Stadler, J. Eakins, F. Pognan, J. O'Brien, R. Elliott, S. Astley, A. Bailley, K. Herbert, D. Chauhan, F. Kelly, C. Dunster, J. Lunec, I. Podmore, P. Patel, S. Johnson, M. Evans, A. White, R. Tyrrell, M. Gordon, C. Wild, L. Hardie, E. Smith, Inter-laboratory Validation of Procedures for Measuring 8-oxo-7,8-dihydroguanine/8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA. Free Radic. Res. 36 (3), 239-245 (2002).
  • [17] S. Shibutani, M. Takeshita, A.P. Grollman, Insertion of specific bases during DNA synthesis past the oxidationdamaged base 8-oxodG. Nature 349, 431-434 (1991).
  • [18] M. Moriya, C. Ou, V. Bodepudi, F. Johnson, M. Takeshita, A.P. Grollman, Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat. Res. 254, 281-288 (1991).
  • [19] S.J. Culp, B.P. Cho, F.F. Kadlubar, F.E. Evans, Structural and conformational analyses of 8-hydroxy-2'-deoxyguanosine. Chem. Res. Toxicol. 2, 416-422 (1989).
  • [20] M. Aida, S. Nishimura, An ab initio molecular orbital study on the characteristics of 8-hydroxyguanine, Mutat. Res. 192, 83-89 (1987).
  • [21] M. Nonella, G. Hanggi, E. Dubler, The geometry of the neutral, protonated or coordinated purine derivatives hypoxanthine, xanthine, allopurinol and alloxanthine: quantum chemical and X-ray crystallographic studies. J. Mol. Struct. THEOCHEM 279, 173-190 (1993).
  • [22] D. Venkateswarlu, J. Leszczynski, Tautomeric equilibria in 8-oxopurines: Implication for mutagenecity. J. Comput. Aided Mol. Des. 12, 373-382 (1998).
  • [23] J. Gu, J. Leszczynski, Influence of the Oxygen at the C8 Position on the Intramolecular Proton Transfer in C8-Oxidative Guanine. J. Phys. Chem. A 103, 577-584 (1999).
  • [24] K. Miaskiewicz, J. Miller and R. Osman, Ab initio theoretical study of the structures of thymine glycol and dihydrothymine. Int. J. Radiat. Biol. 63, 677- 686 (1993).
  • [25] K. Miaskiewicz, J. Miller, R. Ostrein, R. Osman, Molecular dynamics simulations of the effects of ring-saturated thymine lesions on DNA structure. Biopolymers 33, 113-124 (1994).
  • [26] Y. H. Jang, W.A. Goddard III, K.T. Noyes, L.C. Sowers, S. Hwang, D.S. Chung, First Principles Calculations of the Tautomers and pKa Values of 8-Oxoguanine: Implications for Mutagenicity and Repair. Chem. Res. Toxicol. 15, 1023-1035 (2002).
  • [27] K.N. Rogstad, Y.H. Jang, L.C. Sowers. W.A. Goddard III, First Principles Calculations of the pKa Values and Tautomers of Isoguanine and Xanthine, Chem. Res. Toxicol. 16, 1455- 1462 (2003).
  • [28] Y.H. Jang, W.A. Goddard III, K.T. Noyes, L.C. Sowers, S. Hwang, D.S. Chung, pKa Values of Guanine in Water: Density Functional Theory Calculations Combined with Poisson−Boltzmann Continuum−Solvation Model. J. Phys. Chem. B 107, 344-357 (2003).
  • [29] A. Rich, in: M. Kasah, B. Pullman, (ed) Horizons in Biochemistry, Academic Press, New York 1962.
  • [30] H. Kamiya, Mutagenic potentials of damaged nucleic acids produced by reactive oxygen/nitrogen species: approaches using synthetic oligonucleotides and nucleotides: SURVEY AND SUMMARY. Nucl. Acids Res. 31 (2), 517-531 (2003).
  • [31] C. Roberts, R. Banduru, C. Switzer, Theoretical and Experimental Study of Isoguanine and Isocytosine: Base Pairing in an Expanded Genetic System. J. Am. Chem. Soc. 119, 4640-4649 (1997).
  • [32] X. Chen, R. Kierzek, D.H. Turner, Stability and Structure of RNA Duplexes Containing Isoguanosine and Isocytidine. J. Am. Chem. Soc. 123, 1267-1274 (2001).
  • [33] J.R. Blas, F.J. Luque, M. Orozco, Unique Tautomeric Properties of Isoguanine. J. Am. Chem. Soc. 126, 154-164 (2004).
  • [34] Y.H. Jang, L.C. Sowers, T. Cagin, W.A. Goddard III, First Principles Calculation of pKa Values for 5-Substituted Uracils. J. Phys. Chem. A 105, 274-280 (2001).
  • [35] B.P. Cho, F.F. Kadlubar, S.J. Culp, F.E. Evans, 15N nuclear magnetic resonance studies on the tautomerism of 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and other C8-substituted guanine nucleosides. Chem. Res. Toxicol. 3, 445-452 (1990).
  • [36] B.P. Cho, Structure of oxidatively damaged nucleic acid adducts: PH dependence of the 13C NMR spectra of 8-oxoguanosine and 8-oxoadenosine. Magn. Reson. Chem. 31, 1048-1053 (1993).
  • [37] J. Gu, A. Tian, W.K. Li, and N.B. Wong, Intramolecular proton transfer in the tautomers of C8 oxidative adenine: A DFT study. J. Phys. Chem. B 104, 10692-10698 (2000).
  • [38] J.H. Miller, C.C.P. Fan-Chiang, T.P. Straatsma, M.A. Kennedy, 8-Oxoguanine enhances bending of DNA that favors binding to glycosylases. J. Am. Chem. Soc. 125, 6331-6336 (2003).
  • [39] K. Song, V. Hornak, C. De Los Santos, A.P. Grollman, C. Simmerling, Molecular mechanics parameters for the FapydG DNA lesion. J. Comput. Chem. 29, 17-23 (2008).
  • [40] D.E. Volk, V. Thiviyanathan, A. Somasunderam, D.G. Gorenstein, Ab initio base-pairing energies of an oxidized thymine product, 5-formyluracil, with standard DNA bases at the BSSE-free DFT and MP2 theory levels. Org. Biomol. Chem. 5, 1554-1558 (2007).
  • [41] J.V. Burda, J. Šponer, J. Hrabadkova, M. Zeizinger, J. Leszczynski, The Influence of N7 Guanine Modifications on the Strength of Watson−Crick Base Pairing and Guanine N1 Acidity: Comparison of Gas-Phase and Condensed-Phase Trends. J. Phys. Chem. B 107, 5349-5356 (2003).
  • [42] T.K. Ha, H.J. Keller, R. Gunde, H.H. Gunthard, Quantum chemical study of structure and stability of all 14 isomers of isocytosine 1. J. Mol. Struct. 376, 375-397 (1996).
  • [43] P. Cysewski, D. Jeziorek, R. Oliński, Ab ab initio SCF study on the tautomerisation of fapy-guanine. J. Mol. Struct. THEOCHEM 369, 93-104 (1996).
  • [44] P. Cysewski, C. Vidal-Madjar, R. Jordan, R. Oliński, Structure and properties of hydroxyl radical modified nucleic acid components: II. 8-oxoadenine and 8-oxo-2'-deox-yadenosine. J. Mol. Struct. THEOCHEM 397, 167-177 (1997).
  • [45] P. Cysewski, D. Jeziorek, An ab inito SCF study on the tautomerisation of the 8-oxo-guanine and xanthine. J. Mol. Struct. THEOCHEM 430, 219-229 (1998).
  • [46] P. Cysewski, D. Jeziorek, R. Oliński, Structure and tautomeric properties of thymine derivatives generated by hydroxyl radical in aerobic conditions, J. Chem. Soc. Faraday Trans. 94, 1813-1821 (1998).
  • [47] P. Cysewski, D. Jeziorek, R. Oliński, W. Woźnicki, Ab initio studies on the structure and properties of the hydroxyl radical modified adenine derivatives in different tautomeric forms, J. Phys. Chem. 99, 9702-9708 (1995).
  • [48] P. Cysewski, C. Vidal-Madjar, V. Noinville, R. Oliński, Structure and properties of hydroxyl radical modified nucleic acid components:I. 2-oxoadenine and 2’deoxy-8-oxo-adenosine. Bul. Soc. Chim. Fr. 132, 453-460 (1995).
  • [49] K. Białkowski, P. Cysewski, R. Oliński, Effect of 2’-deoxyguanine oxidation at C8 position on the N-glycosidic bond stability. Z. Naturforschung 51C, 119-122 (1996).
  • [50] P. Cysewski, An ab initio study of the tautomeric and coding properties of 8-oxo-guanine. J. Chem. Soc. Faraday Trans. 94, 3117-3125 (1998).
  • [51] P. Cysewski, Theoretical studies on the tautomeric properties of diamino-5-formamidopyrimidines. Z. Naturforschung 53C, 1027-1036 (1998).
  • [52] P. Cysewski, Structure and properties of hydroxyl radical modified nucleic acid components: IV tautomerism and miscoding properties of 5-hydroxycytosine. J. Mol. Struct. THEOCHEM 466, 49-58 (1999).
  • [53] P. Cysewski, D. Jeziorek, R. Oliński, Structure and tautomeric properties of cytosine derivatives generated by a hydroxyl radical in aerobic conditions. J. Mol. Struct. THEOCHEM 459, 1-14 (1999).
  • [54] P. Cysewski, Structure and properties of hydroxyl radical modified nucleic acid components: pairing properties of 2- hydroxyadenine and 8-oxoadenine. J. Mol. Struct. THEOCHEM 466, 59-67 (1999).
  • [55] P. Cysewski, Structure and tautomeric properties of thymine derivatives generated by hydroxyl radical in anaerobic conditions. J. Mol. Struct. THEOCHEM 467, 51-61 (1999).
  • [56] P. Cysewski, R. Oliński, Ab initio quantum chemistry studies on the coding properties of cytosine derivatives generated by hydroxyl radical in aerobic conditions. J. Mol. Struct. THEOCHEM 490, 69-79 (1999).
  • [57] P. Cysewski, R. Oliński, Theoretical description of the coding potential of diamino-5-formamidopyrimidines, Z. Naturforschung 54C, 239-245 (1999).
  • [58] P. Cysewski, Coding properties of thymine derivatives generated by hydroxyl radical in aerobic conditions, Phys. Chem. Chem. Phys. 1, 1531-1537 (1999).
  • [59] P. Cysewski, Ab initio calculations of the pairing of four canonical DNA bases with three thymine derivatives generated by hydroxyl radical in anaerobic conditions, Pol. J. Chem. 74, 245-256 (2000).
  • [60] P. Cysewski, D. Bira, K. Strzelecka, Proton affinities and N-glycosidic bond stabilities of hydroxyl radical modified adenosine. Phys. Chem. Chem. Phys. 5, 4899-4904 (2003).
  • [61] P. Cysewski, D. Bira, K. Białkowski, An ab initio quantum chemistry study on N-glycosidic bond stabilities of hydroxyl radical modified guanosine analogs. J. Mol. Struct. THEOCHEM 678, 77-81 (2004).
  • [62] P. Cysewski, An ab initio DFT characteristics of tautomeric properties of hydroxyl radical modified nucleosides in polar and non-polar environments. Z. Phys. Chem. 219, 213-234 (2005).
  • [63] P. Cysewski, An ab initio study on nucleic acid bases aromaticities. J. Mol. Struct. THEOCHEM 714, 29-34 (2005).
  • [64] P. Cysewski, K. Kozłowska, Accurate gas phase basicities of hydroxyl radical modified purines estimated by advanced quantum chemistry methods, Pol. J. Chem. 82, 2255-2268 (2008).
  • [65] P. Cysewski, The impact of the nucleoside oxidation on the susceptibility to chemical carcinogens studied by first principle and semiempirical quantum chemistry methods. J. Mol. Struct. THEOCHEM 863, 16-21 (2008).
  • [66] P. Cysewski, Intra-strand stacking interactions in B-DNA crystals characterized by post-SCF quantum chemistry computations. New J. Chem. 33, 1909-1917 (2009).
  • [67] P. Cysewski, The post-SCF quantum chemistry characteristics of inter- and intra-strand stacking interactions in d(CpG) and d(GpC) steps found in B-DNA, A-DNA and Z-DNA crystals. Journal of Molecular Modeling 15(6), 597-606 (2009).
  • [68] P. Cysewski, K. Kozłowska, B. Szefler, Accurate microand macro- gas phase basicities of hydroxyl-radicalmodified pyrimidines estimated by advanced quantum chemistry methods. Journal of Molecular Modeling 15(6), 711-722 (2009).
  • [69] P. Cysewski, P. Czeleń, Structural and energetic heterogeneities of canonical and oxidized central guanine triad of B-DNA telomeric fragments. Journal of Molecular Modeling 15(6), 607-613 (2009).
  • [70] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993).
  • [71] J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli, S. Corni, Molecular properties in solution described with a continuum solvation model. Phys. Chem. Chem. Phys. 4, 5697-5712 (2002).
  • [72] A. Bondi, van der Waals Volumes and Radii. J. Phys. Chem. 68, 441-451 (1964).
  • [73] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, Molecular Perspective Review of Biochemical Role of Nucleobases Modified by Oxidative Stress 71 O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Cliord, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.V. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Wallingford CT., 2004.
  • [74] G.J. Fogarasi, High-level electron correlation calculations on some tautomers of cytosine. Mol. Struct. 413, 271-278 (1997).
  • [75] J. Leszczynski, Tautomerism of uracil: the final chapter? Fourth-order electron correlation contributions to the relative energies of tautomers. J. Phys. Chem. 96, 1649-1653 (1992).
  • [76] R.J. Kobayashi, A CCSD(T) Study of the Relative Stabilities of Cytosine Tautomers. Phys. Chem. A 102, 10813-10817 (1998).
  • [77] H.Y. Afeefy, J.F. Liebman, S.E. Stein, Neutral Thermochemical Data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (ed.) P.J. Linstrom, W.G. Mallard, 6http://webbook.nist.gov National Institute of Standards and Technology, Gaithersburg 2005.
  • [78] Y. Podolyan, L. Gorb, J. Leszczynski, Protonation of Nucleic Acid Bases. A Comprehensive Post-Hartree−Fock Study of the Energetics and Proton Affinities. J. Phys. Chem. A 104, 7346-7352 (2000).
  • [79] A.R. Katritzky, J.M. Lagowski, Prototropic Tautomerism of Heteroaromatic Compounds: 3. Five-Membered Rings and One Hetero Atom. Adv. Heterocycl. Chem. 1, 311-325 (1963).
  • [80] E.D. Raczyńska, W. Kosińska, B. Ośmiałowski, R. Gawinecki, Tautomeric Equilibria in Relation to Pi-Electron Delocalization. Chem. Rev. 105, 3561-3612 (2005).
  • [81] L.M. Cunane, M.R. Taylor, The Effects of Metal Binding on a Nucleobase: the Experimental Charge Density and Electrostatic Potential in lH+-Adeniniumtrichiorozinc(II) at 123 K and its Relationship to that in Adenine Hydrochloride Hemihydrate. Acta Crystallogr. D 53, 765-776 (1997).
  • [82] W. Saenger, Principles of Nucleic Acid Structure. Springer-Verlag, Berlin 1988.
  • [83] R.R. Sinden, DNA Structure and Function. Academic Press, San Diego 1994.
  • [84] I.A. Topol, G.J. Tawa, S.K. Burt, A.A. Rashin, Calculation of Absolute and Relative Acidities of Substituted Imidazoles in Aqueous Solvent. J. Phys. Chem. A. 101, 10075-10081 (1997).
  • [85] C. Lim, D. Bashford, M. Karplus, Absolute pKa calculations with continuum dielectric methods, J. Phys. Chem. 95, 5610-5620 (1991).
  • [86] M.D. Tissandier, K.A. Cowen, W.Y. Feng, E. Gundlach, M. J. Cohen, A.D. Earhart, J.V. Coe, The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data. J. Phys. Chem. A 102, 7787-7794 (1998).
  • [87] C.P. Kelly, C.J. Cramer, D.G. Truhlar, Aqueous Solvation Free Energies of Ions and Ion-Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton, J. Phys. Chem. B 110, 16066-16081 (2006).
  • [88] M.B.C. Leao, A.C. Pavao, Molecular Orbital Analysis of Chemical Carcinogens. Int. J. Quantum Chem. 62, 323-328 (1997).
  • [89] M.B. C. Leao, R.L. Longo, A.C. Pavao, A molecular orbital analysis of the DNA bases. J. Mol. Struct. THEOCHEM 490, 145-153 (1999).
  • [90] M.B.C. Leao, A.C. Pavao, v. A.A. Espinoza, C.A. Taft, E.P. Bulnes, A multivariate model of chemical carcinogenesis. J. Mol. Struct. THEOCHEM 719, 129-135 (2005).
  • [91] E.C. Miller, Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential Address. Cancer Res. 38, 1479-1496 (1978).
  • [92] B. Vogelstein, K.W. Kinzler, Carcinogens leave fingerprints, Nature 355, 209-210 (1992).
  • [93] B. Armitage, Photocleavage of Nucleic Acids, Chem. Rev. 98, 1171-1200 (1998).
  • [94] C.J. Barrows, J.G. Muller, Oxidative Nucleobase Modifications Leading to Strand Scission. Chem. Rev. 98, 1109-1152 (1998).
  • [95] E. Meggers, M.E. Michel-Beyerle, B. Giese, Sequence Dependent Long-Range Hole Transport in DNA. J. Am. Chem. Soc. 120, 12950-12955 (1998).
  • [96] H. Sugiyama, I. Saito, Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5‘-Localization of HOMO of Stacked GG Bases in B-Form DNA. J. Am. Chem. Soc. 118, 7063-7068 (1996).
  • [97] P. Wolf, G.D.D. Jones, L.P. Candeias, L.P. O’Neil, Introduction of Strand Breaks in Polynucleotides and DNA by Sulfate Radical Anion: Role of Electron Loss Centres as Precursors of Strand Breakage. Int. J. Radiat. Biol. 64, 7-18 (1993).
  • [98] L. Fairall, L. Chapman, H. Moss, T. de Lange, D. Rhodes, Structure of the TRFH Dimerization Domain of the Human Telomeric Proteins TRF1 and TRF2. Mol. Cell. 8, 351-361 (2001).
  • [99] H. Yanagawa, Y. Ogawa, M. Ueno, Redox ribonucleosides. Isolation and characterization of 5-hydroxyuridine, 8-hydroxyguanosine, and 8-hydroxyadenosine from Torula yeast RNA. J. Biol. Chem. 267, 13320-13326 (1992).
  • [100] S. Kawanishi, Y. Hiraku, M. Murata, S. Oikawa, The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic. Biol. Med. 32, 822-832 (2002).
  • [101] P.G. Slade, M.K. Hailer, B.D. Martin, K.D. Sugden, Guanine-specific oxidation of double stranded DNA by Cr(VI) and ascorbic acid forms spiroiminodihydantoin and 8-oxo-2‘-deoxyguanosine. Chem. Res. Toxicol. 18, 1140-1149 (2005).
  • [102] C.A.M. Seidel, A. Schulz, M.H.M. Sauer, Nucleobase-Specific Quenching of Fluorescent Dyes. 1. Nucleobase One-Electron Redox Potentials and Their Correlation with Static and Dynamic Quenching Efficiencies. J. Phys. Chem. 100, 5541-5553 (1996).
  • [103] H.E. Krokan, R. Standal, G. Slupphaug, DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1-16 (1997).
  • [104] P.M. Wright, J. Yu, J. Cillo, A.L. Lu, The active site of the Escherichia coli mutY DNA adenine glycosylase. J. Biol. Chem. 274, 29011-29018 (1999).
  • [105] J. Hovinen, C. Glemarec, A. Sandström, C. Sund, J. Chattopadhyaya, Spectroscopic, kinetic and semiempirical molecular orbital studies on 8-amino-, 8-methylamino-& 8-dimethylamino-adenosines. Tetrahedron 47, 4693-4708 (1991).
  • [106] J.A. Zoltewicz, D.F. Clark, T.W. Sharpless, G. Grahe, Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J. Am. Chem. Soc. 92, 1741-1750 (1970).
  • [107] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553-566 (1970).
  • [108] H. Kasai, H. Tanooka, S. Nishimura, Formation of 8-hydroxyguanine residues in DNA by X-irradiation. Gann. 75, 1037-1039 (1984).
  • [109] P. Cysewski, Opis właściwości tautomerycznych i kodujących produktów wolnorodnikowych uszkodzeń zasad azotowych. Bydgoszcz 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0027-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.