PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on numerical solution for a robot arm problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is focused on providing numerical solutions for a Robot arm problem using the Runge-Kutta sixth-order algorithm. The parameters involved in problem of a Robot control have also been discussed through RKsixth-order algorithm. The précised solution of the system of equations representing the arm model of a robot has been compared with the corresponding approximate solutions at different time intervals. Experimental results and comparison show the efficiency of the numerical integration algorithm based on the absolute error between the exact and approximate solutions. The stability polynomial for the test equation ( is a complex Number) using RK-Butcher algorithm obtained by Murugesan et. al. [Murugesan K., Sekar S., Murugesh V., Park J.Y., "Numerical solution of an Industrial Robot arm Control Problem using the RK-Butcher Algorithm", International Journal of Computer Applications in Technology, vol.19, no. 2, 2004, pp. 132-138] is not correct and the stability regions for RK-fourth order (RKAM) and RK-Butcher methods have been presented incorrectly. They have made a mistake in determining the range for real parts of (h is a step size) involved in the test equation for RKAM and RK-Butcher algorithms. In the present paper, a corrective measure has been taken to obtain the stability polynomial for the case of RK-Butcher algorithm, the ranges for the real part of and to present graphically the stability regions of the RKAM and the RK-Butcher methods. The stability polynomial and stability region of RK-Sixth order are also reported. Based on the numerical results it is observed that the error involved in the numerical solution obtained by RK-Sixth order is less in comparison with that obtained by the RK-Fifth order and RK-Fourth order respectively.
Twórcy
  • Department of Mathematics, National Institute of Technology, Tiruchirappalli-620 015, Tamilnadu, India, rpalagu@nitt.edu
Bibliografia
  • [1] Murugesan K., Sekar S., Murugesh V., Park J.Y., “Numerical solution of an Industrial Robot arm Control Problem using the RK-Butcher Algorithm”,International Journal of Computer Applications in Technology, vol.19, no. 2, 2004, pp. 132-138.
  • [2] Sekar S., Murugesh V., Murugesan K., “Numerical Strategies for the System of Second order IVPs Using the RK-Butcher Algorithms”,International Journal of Computer Science and Applications, vol. 1, no. 2, 2004, pp. 96-117.
  • [3] Taha Z., “Approach to Variable Structure Control of Industrial Robots”, ed. by Warwick K. and Pugh A.,Robot Control-theory and Applications, Peter Peregrinus Ltd, North-Holland, 1988, pp.53-59.
  • [4] Oucheriah S., “Robust Tracking and Model Following of Uncertain Dynamic Delay Systems by Memory-less Linear Controllers”,IEEE Transactions on Automatic Control, vol. 44, no. 7, 1999, pp. 1473-1481.
  • [5] Lim D., Seraji H., “Configuration Control of a Mobile Dexterous Robot: Real Time Implementation and Experimentation”,Journal of Robotics Research, vol. 16, no. 5, 1997, pp. 601-618.
  • [6] Polycarpou M.M., Loannou P.A., “A Robust Adaptive Non-Linear Control Design”, Automatica, vol. 32. no. 3, 1996, pp. 423-427.
  • [7] Krishnan H., Harris Mcclamroch N., “Tracking in Non-Linear Differential-Algebraic Control Systems with Applications to Constrained Robot Systems”, Automatica, vol.30, no. 12, 1994, pp. 1885-1897.
  • [8] Zhihua Qu, “Robot Control of a Class of Non-Linear Uncertain Systems”,IEEE Transactions on Automatic Control, vol. 37, nol. 9, 1992, pp. 1437-1442.
  • [9] Alexander R.K., Coyle, J.J., “Runge-Kutta Methods for Differential-Algebric Systems”,SIAM Journal of Numerical Analysis, vol. 27, no.3, 1990, pp. 736-752.
  • [10] Evans D.J., “A New 4 Order Runge-Kutta Method for Initial Value Problems with Error Control”,International Journal of Computer Mathematics, vol. 39, issue 3&4, 1991, pp. 217-227.
  • [11] Hung C., “Dissipativity of Runge-Kutta Methods for Dynamical systems with Delays”,IMA Journal of Numerical Analysis, vol.20, no.1, 2000, pp. 153-166.
  • [12] Shampine L.F., Watts H.A. “The Art of a Runge-Kutta Code. Part I”,Mathematical Software , vol.3. 1977, pp. 257-275.
  • [13] Butcher J.C., “On Runge Proccesses of Higher Order”,Journal of Australian Mathematical Society, vol.4. 1964, p.179.
  • [14] Butcher J.C.,The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods, John Wiley & Sons, UK, 1987.
  • [15] Butcher J.C., “On Order Reduction for Runge-Kutta Methods Applied to Differential-Algebraic Systems and to Stiff Systems of ODEs”,SIAM Journal of Numerical Analysis, vol.27, 1990, pp. 447-456.
  • [16] Fehlberg E., “Low order Classical Runge-Kutta Formulas with Step-size Control and Their Application to Some Heat Transfer Problems”, NASA Tech. Report.,315 (1969), Extract Published in: Computing,vol.6, 1970, pp. 66-71.
  • [17] Forsythe G.E, Malcolm M.A, Moler C.D.,Computer Methods for Mathematical Computations, Prentice-Hall of India, Englewood Cliffs, NJ, 1977, p. 135.
  • [18] Bader M., “A Comparative Study of New Truncation Error Estimates and Intrinsic Accuracies of some Higher order Runge-Kutta Algorithms”, Computational Chemistry, vol. 11, 1987, pp. 121-124.
  • [19] Bader M., “A New Technique for the Early Detection of Stiffness in Coupled Differential Equations and Application to standard Runge-Kutta Algorithms”,Theoretical Chemistry Accounts, vol. 99, 1998, pp. 215-219.
  • [20] Shampine L.F., Gordon. M.K., Computer Solutions of Ordinary Differential Equations, W.H. Freeman: San Fran-cisco CA, 1975, p. 23.
  • [21] Taha Z., Dynamics and Control of Robots, Ph.D Thesis, University of Wales, 1987.
  • [22] Huang H.P., Tseng W.L., “Asymptotic Observer Design for Constrained Robot Systems”,IEE Proceedings on Control Theory and Applications D, vol. 138, issue 3, 1991, pp.211-216.
  • [23] Shampine L.F., Watts. H.A. (1985), “Some practical Runge-Kutta formulas”, Mathematics of Computations, vol.46, no. 173, pp. 135-150.
  • [24] Paul Dhayabaran D., Henry Amirtharaj E.C., Murugesan K., Evans D.J., Numerical Solution Robot Arm Model using STWS RKHEM Techniques”, in: G.R. Liu, V.B.C. Tan and X. Han, Computational Methods, LNCS, ISBN 978-1-4020-3952-2 (Print) 978-1-4020-3953-9 (Online), 2006, pp. 1695-1699.
  • [25] Nanayakkara T., Watanabe K., Kiguchi K., Izumi K, “Controlling multi-link manipulators by fuzzy selection of dynamic models”. In: 26thAnnual Conference of the IEEE- IECON 2000, vol.1, 2000, pp.638-643.
  • [26] Shampine L.F., Watts H.A., “The Art of writing a Runge-Kutta code. Part II”,Applied Mathematical Computations, vol.5, 1979, pp. 93-121.
  • [27] Hung C., “Dissipitivity of Runge-Kutta methods for dynamical systems with delays”,IMA.Journal of Numerical Analysis, vol.20, 2000, pp.153-166.
  • [28] Young K.K.D., ”Controller Design for a Manipulator Using Theory of Variable Structure Systems”, vol. SMC-8,IEEE Transactions on Systems, Man and Cybernetics ,no.2, 1978, pp. 101-109.
  • [29] Jingzhou (James) Yang, Wei Yu, Joo Kim, Karim Abdel-Malek, “On the placement of open-loop robotic manipulators for reachability”, Mechanism and Machine Theory, vol. 44, issue 4, 2009, pp. 671-684.
  • [30] Jong-Seok Rho, Kwang-Il Oh, Hong-Seok Kim, aHyun-Kyo Jung, “Characteristic Analysis and Design of a B14 Rotary Ultrasonic Motor for a Robot Arm Taking the Contact Mechanism into Consideration“,IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, 2007, pp. 715-728.
  • [31] Bakari M.J., Zied Kh.M., Seward D.W., “Development of a Multi-Arm Mobile Robot for Nuclear Decommissioning Tasks”,International Journal of Advanced Robotic Systems, vol.4, 2007, pp. 397-406.
  • [32] V. Murugesh and K. Murgesan, RK-Butcher Algorithms for Singular System based Electronic Circuit,International Journal of Computer Mathematics, vol. 86, no. 3, 2009, pp. 523-536.
  • [33] J.Y. Park, David J. Evans, K. Murugesan, S. Sekar, V. Murugesh, “Optimal Control of Singular Systems using the RK-Butcher Algorithm”, International Journal of Computer Mathematics, vol. 81, no. 2, 2004, pp. 239-249.
  • [34] J.Y. Park, K. Murugesan, David J. Evans, S. Sekar, V. Murugesh,“Observer Design of Singular Systems (Transistor Circuits) using the RK-Butcher Algorithm”,International Journal of Computer Mathematics, vol. 82, no. 1, 2005, pp. 111-123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0025-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.