PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A realization of an FPGA sub system for reducing odometric localization errors in wheeled mobile robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces a simple and efficient method and its implementation in an FPGA for reducing the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle. The standard quadrature technique is used to obtain four counts in each encoder period. In this work a three-wheeled mobile robot vehicle with one driving-steering wheel and two-fixed rear wheels in-axis, fitted with incremental optical encoders is considered. The CORDIC algorithm has been used for the computation of sine and cosine terms in the update equations. The results presented demonstrate the effectiveness of the technique.
Twórcy
autor
  • Department of Electronics, Cochin University of Science and Technology, Cochin-682022, Kerala, INDIA. Phone: +91-484-2576418; Fax: +91-484-2575800), james@cusat.ac.in
Bibliografia
  • [[1] Siegel M., Gunatilake P., “Remote Inspection Technologies for Aircraft Skin Inspection”. In: IEEE Workshop on Emergent Technologies and Virtual Systems for Instrumentation and Measurement, Niagara Falls,Ontario, Canada, 15 -17 May 1997, pp. 69-78.
  • [2] Prassler E., Ritter A., Schaeffer C., Fiorini P., “A Short History of Cleaning Robots”,Autonomous Robots, Special Issue on Cleaning and Housekeeping Robots, vol. 9, issue 3, December 2000.
  • [3] Iborra A., Pastor J., Alvarez B., Fernandez C., Merono J., “Robots in Radioactive Environments”,IEEE Robotics and Automation Magazine, vol. 10, no.4, December 2003, pp. 12-22.
  • [4] Anthony Stentz, John Bares, Sanjiv Singh and Patrick Rowe, “A Robotic Excavator for Autonomous Truck Loading”,Autonomous Robots, vol. 7, 1999, pp. 175-186.
  • [5] Rossetti M. D., Kumar A. and Felder R., “Mobile Robot Simulation of Clinical Laboratory Deliveries”. In:Proceedings of the 30 Conference on Winter Simulation, Washington, D.C., United States, 1998, pp. 1415-1422.
  • [6] Montemerlo M., Pineau J., Roy N., Thrun S., Verma V., “Experiences with a Mobile Robotic Guide for the Elderly”. In:Proceedings of the 18 AAAI National Conference on Artificial Intelligence, Edmonton, Canada, 2002, pp. 587-592.
  • [7] Bahl R., “Object Classification using Compact Sector Scanning Sonars in Turbid Waters”. In:Proc. 2 IARP Mobile Robots for Subsea Environments, Monterey, CA USA, vol. 23, 1990, pp. 303-327.
  • [8] Healey A.J., “Application of Formation Control for Multi-Vehicle Robotic Minesweeping”. In:Proceedings of the 40 IEEE Conference on Decision and Control, vol.2, 2001, pp. 1497-1502.
  • [9] Everett H.R., Gage D.W., “From Laboratory to Warehouse: Security Robots Meet the Real World”,International Journal of Robotics Research, Special Issue on Field and Service Robotics, vol. 18, no. 7, July 1999, pp. 760-768.
  • [10] Pastore T.H., Everett H.R., and Bonner K., “Mobile Robots for Outdoor Security Applications”,American Nuclear Society 8 International Topical Meeting on Robotics and Remote Systems (ANS'99), Pittsburgh, PA, USA April 1999. Available at: http://handle.dtic.mil/100.2/ADA422047
  • [11] Borenstein J., Everett H., Feng L., Wehe D., “Mobile Robot Positioning Sensors and Techniques”,Journal of Robotic Systems, Special Issue on Mobile Robots, vol. 14, no. 4, 1997, pp. 231-249
  • [12] Kleeman L., “Optimal Estimation of position and Heading for Mobile Robots Using Ultrasonic Beacons and Dead-reckoning”. In:Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France, 1992, pp. 2582-2587.
  • [13] Leonard J.J., Durrant-Whyte H.F., “Mobile Robot Localization by Tracking Geometric Beacons”,IEEE Transactions on Robotics and Automation, vol. 7, no. 3, 1991, pp. 376-382.
  • [14] Wijk O., Christensen H.I., “Localization and navigation of a mobile robot using natural point landmarks extracted from sonar data”,Robotics and Autonomous Systems, vol. 31, 2000, pp. 31-42.
  • [15] L´Opez-s´ Anchez M., Esteva F., L´Opez De M`Antars R., Silerra C., “Map Generation by Cooperative Low-Cost Robots in Structured Unknown Environments”, Autonomous Robots, vol. 5, 1998, pp. 53-61.
  • [16] Sukkarieh S., Nebot E.M., Durrant-Whyte H.F., “A High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle Applications”, IEEE Transactions on Robotics and Automation, vol. 15, no. 3, 1999, pp. 572-578.
  • [17] Borenstein J., Feng L., “Measurement and Correction of Systematic Odometry Errors in Mobile Robots”,IEEE Transactions on Robotics and Automation , vol.12, no. 6, 1996, pp. 869-880.
  • [18] Barshan B., Durrant-Whyte H.F., “Inertial Navigation Systems for Mobile Robots”,IEEE Transactions on Robotics and Automation , vol.11, no. 3, 1995, pp. 328-342.
  • [19] Lee S., Song J.-B., “Robust Mobile Robot Localization using Optical Flow Sensors and Encoders”. In Proc. of the IEEE Int. Conf. on Robotics & Automation, April 2004, pp. 1039-1044.
  • [20] De Cecco M., “Sensor fusion of inertial-odometric navigation as a function of the actual manoeuvres of autonomous guided vehicles”,IOP Meas. Sci. Technol.,vol.14 2003, pp. 643-653.
  • [21] Faccio M., , “An embedded system for position and speed measurement adopting incremental encoders”. In: Proc. of the IEEE Ind. Appl. Conf., vol. 2, 2004, pp. 1192-1199.
  • [22] Ekekwea N., Etienne-Cummingsa R., and Peter Kazanzidesb, “A wide speed range and high precision position and velocity measurements chip with serial peripheral interface”, ELS INTEGRATION, the VLSI journal,. Vol. 41, 2008, pp. 297-305.
  • [23] Hebert B., Michel Brule M., Dessaint L.-A., “A High Efficiency Interface for a Biphase Incremental Encoder with Error Detection”,IEEE Transactions on Industrial Electronics, vol. 40, no. 1, 1993, pp. 155-156.
  • [24] Ojeda L., Borenstein J., “Reduction of Odometry Errors in Over-constrained Mobile Robots”. In:Proceedings of the UGV Technology Conference at the 2003 SPIE Aero-Sense Symposium, Orlando, FL, USA, 21 -25 April 2003, vol. 5083, pp. 431-439.
  • [25] Volder J., “The CORDIC Trigonometric Computing Technique”,IRE Trans Electronic Computing, vol. EC-8, September 1959, pp. 330-334.
  • [26] Andraka R., “A survey of CORDIC algorithms for FPGA based computers”. In:Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field Programmable Gate Arrays, 22nd -24th February, 1998 pp. 191-200.
  • [27] Altera Corporation, “Cyclone II DSP Development Board Reference Manual”,101 Innovation Drive, San Jose, CA95134, USA. http://www.altera.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0025-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.