Tytuł artykułu
Autorzy
Języki publikacji
Abstrakty
Density functional theory method at the level of B3LYP in combination with the polarizable continuum model have been used to compute one-electron oxidation potentials for fifteen different aromatic hydrocarbons derivatives in acetonitrile solution. A linear relation ship was observed between the the o retically predicted redox values and experimentally determined anodic peak potentials of the aromatic hydrocarbons derivatives. A good correlation is also found between experimental anodic peak oxidation potentials and a simple computed property, namely the energy of the high est occupied molecular orbital for neutral or radical cation of the aromatic hydrocarbons in acetonitrile (R2 = 0.95).
Wydawca
Czasopismo
Rocznik
Tom
Strony
1449--1449
Opis fizyczny
–1456, Bibliogr. 32 poz., rys.
Twórcy
autor
autor
autor
- Department of Chemistry, Lorestan University, Khoramabad, Iran, Alizadehk@ya hoo.com
Bibliografia
- l. Benassi R., Ferrarini R, Fontanesi C, Bendetti L. and Paolucci F., J. Electroanal. Chen 564, 231 (2004).
- 2. Rychnovsky S.D., Vaidyanathan R., Beauchamp T., Lin R. and Farmer RJ., J. Org. Chem., 64, 6745 (1999).
- 3. Topol I.A., Mcgrath C., Chertova E., Dasenbrock C., Lacourse W.R., Eissenstat M.A., Burt S.K.,Henderson L.E. and Casas-Finet J.R., Protein Sci., 10, 1434 (2001).
- 4. Shamsipur M., Alizadeh K. nd Arshadi S., J. Mol. Struct. (Theochem.), 758, 71 (2006).
- 5. Shamsipur M., Siroueinejad A., Hemmateenejad B., Abbaspour A., Sharghi H., Alizadeh K. and Arshadi S., J. Electroanal. Chem., 600, 345 (2007).
- 6. Shamsipur M., Mohammadi T., Alizadeh K., Sharghi H. and Nichols R.J., Polish J. Chem., 79, 1379 (2005).
- 7. Benedetti L., Gavioli C.B. and Fontanesi C., J. Chem. Soc. Faraday Trans., 86, 329 (1999).
- 8. Fontanesi C., J. Mol. Struct. (Theochem.), 329, 87 (1997).
- 9. Harada M., Watanabe I. and Watarai H., Chem. Phys. Lett., 301, 270 (1999).
- 10. Fontanesi C., Baraldi P. and Marcaccio M., J. Mol. Struct. (Theochem.), 548, 13 (2001).
- 11. Howell J.O., Goncalves J.M., Amatore C., Klasinc L., Wightman R.M. and Kochi J.K., J. Am. Chem.Soc., 106, 3968 (1984).
- 12. Becke A.D., J. Chem. Phys., 98, 5648 (1993).
- 13. Stephens P.J., Devlin F.J., Chabalowski C.F. and Frisch M.J., J. Phys. Chem., 98, 11623 (1994).
- 14. Cramer C. J., Essentials of Computational Chemistry: Theories and Models, 2d Ed., Wiley, Chichester, 2004.
- 15. Reynolds C.A., King P.M. and Richards W.G.,7. Chem. Soc., Chem. Commun., 1434(1988).
- 16. Winget P., Cramer C.J. and Truhlar D.G., Theor. Chem. Acc., 112, 217 (2004).
- 17. Namazian M., Almodarresieh H.A., Noorbala M.R. and Zare H.R., Chem. Phys. Lett., 396,424 (2004).
- 18. Ochterski J. W, Ph.D., help@gaussian.com, Thermochemistry in Gaussian, 2000,
- 19. Cammi R. and Tomasi J., J. Comput. Chem., 16, 1449 (1995).
- 20. Cossi M., Barone V., Commi R. and Tomasi J., Chem. Phys. Lett., 255, 327 (1996).
- 21. Tomasi J. and Persico M., Chem. Rev., 94, 2027 (1994).
- 22. Frisch MJ. and et al, Gaussian 98, Gaussian Inc., Pittsburgh, PA, 1998.
- 23. Winget P, Weber E. J., Cramer C.J. and Truhlar D.G., Phys. Chem. Chem. Phys., 2, 1231 (2000).
- 24. Lister S.G., Reynolds C.A. and Richards W.G., Int. J. Quantum Chem., 41, 293 (1992).
- 25. Uudsemaa M. and Tamm T, J. Phys. Chem. A, 107, 9997 (2003).
- 26. Mas-Ballesté R., Capdevila M., González-Duarte P, Hamidi M., Lledós A., Mégret C. and.de Montauzon D., Dalton Trans., 706 (2004).
- 27. Lewis A., Bumpus J.A., Truhlar D.G. and Cramer C.J., J. Chem. Ed., 81, 596 (2004).
- 28. Tuttle T.R., Malaxos S. and Coe J.Y., J. Phys. Chem., 106, 925 (2002).
- 29. Baik M.H., Ziegler T. and Schauer C.K., J. Am. Chem. Soc., 122, 9143 (2000).
- 30. Sasaki K., Kashimura T., Ohuru M., Ohsaki Y. and Ohta W, J. Electrochem. Soc., 137, 2437 (1990).
- 31. Saeva F.D. and Olin G.R., J. Am. Chem. Soc., 102, 299 (1980).
- 32. Zhou J., Rieker A., Grosser T., Skiebe A. and Hirsch A., J. Chem. Soc. Perkin Trans., 2, l (1997).
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0022-0105