PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Ignition control in the hcci combustion engine system fuelled with methanol-reformed gases

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Homogeneous charge compression ignition (HCCI) combustion enables higher thermal efficiency and lower NOx emission to be achieved in internal combustion engines compared to conventional combustion systems. A new concept HCCI engine system fueled with dimethyl ether (DME) with a high cetane number and methanol-reformed gas (MRG) with high anti-knock properties has been proposed by the author et al. In the system, both DME and MRG are to be produced from methanol by onboard reformers utilizing the engine exhaust heat. It has been shown that adjusting the fraction of the two fuels effectively controls the duration of the low-temperature oxidation and the onset of the high-temperature oxidation in HCCI. The ignition control expands the operable range of equivalence ratio and engine load. Lean combustion by HCCI operation and a waste heat recovery by the fuel reforming utilizing engine exhaust heat achieve a high overall thermal efficiency. While MRG consists of hydrogen and carbon monoxide, the ignition control effect of MRG is attributed mostly to hydrogen. The current paper reviews the characteristics of the HCCI engine system fuelled with methanol reformed gases.
Twórcy
autor
  • Division of Energy and Environmental Systems Hokkaido University N13 W8, Kita-Ward, Sapporo, 060-8628 JAPAN, shudo@eng.hokudai.ac.jp
Bibliografia
  • [1] Furutani M., Ohta Y., Kono M., Hasegawa M., An Ultra-Lean Premixed Compression-Ignition Engine Concept and its Characteristics, Proceedings of COMODIA 98, 1998.
  • [2] Murayama T., Chikahisa T., Guo J., Miyano M., A Study of Compression Ignition Methanol Engine with Converted Dimethyl Ether as an Ignition Improver, SAE Technical Paper, 922212, 1992.
  • [3] Sorenson S. C., Mikkelsen S. E., Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fuelled with Neat Dimethyl Ether, SAE Technical Paper, 950064, 1995.
  • [4] Kajitani S., Chen Z., Konno M., Rhee K. T., Engine Performance and Exhaust Characteristics of Direct-Injection Diesel Engine Operated with DME, SAE Technical Paper, 972973, 1997.
  • [5] Bercic G., Levec J., Catalytic Dehydration of Methanol to Dimethyl Ether Kinetic Investigation and Reactor Simulation, Industrial & Engineering Chemistry Research, 32, 1993.
  • [6] Obert E. F., Internal Combustion Engines and Air Pollution, Harper & Row, 1973.
  • [7] Hirota T., Study of Methanol-reformed Gas Engine, Journal of Society of Automotive Engineers of Japan (in Japanese), 34-10, 1980.
  • [8] Shudo T., Tsuga K., Nakajima Y., Combustion Characteristics of H2-CO-CO2 Mixture in anIC Engine, SAE Technical Paper, 2001-01-0252, 2001.
  • [9] Shudo T., Ono Y., HCCI Combustion of Hydrogen, Carbon Monoxide and Dimethyl Ether, SAE Technical Paper, 2002-01-0112, 2002.
  • [10] Shudo T., Ono Y., Takahashi T., Influence of Hydrogen and Carbon Monoxide on HCCI Combustion of Dimethyl Ether, SAE Technical Paper, 2002-01-2828, 2003.
  • [11] Shudo T., Takahashi T., Influence of Reformed Gas Composition on HCCI Combustion of Onboard Methanol-Reformed Gases, SAE Technical Paper, 2004-01-1908, 2004.
  • [12] List H. Thermodynamik der Verbrennungskraftmaschinen, Springer, 1939.
  • [13] Shudo T., Nabetani S., Nakajima Y., Analysis of the Degree of Constant Volume and Cooling Loss in a Spark Ignition Engine Fuelled with Hydrogen, International Journal of Engine Research, 2-1, 2001.
  • [14] Shudo T., Nabetani S., Nakajima Y., Influence of Specific Heats on Indicator Diagram Analysis in a Hydrogen-fuelled SI Engine, Elsevier JSAE Review, 22-2, 2001.
  • [15] Fischer S. L., Dryer F. L., and Curran H. J., Reaction Kinetics of Dimethyl Ether. I: High-Temperature Pyrolysis and Oxidation in Flow Reactors, International Journal of Chemical Kinetics, 32, 2000.
  • [16] Curran H. J., Fischer S. L., and Dryer F. L., The Reaction Kinetics of Dimethyl Ether. II: Low-Temperature Oxidation in Flow Reactors, International Journal of Chemical Kinetics, 32, 2000.
  • [17] Yamada H., Suzaki K., Choi N., Sakanashi H., Tezaki A., Chain Reaction Mechanism in in Homogeneous Charge Compression Ignition of Dimethyl Ether, Abstract of Work-In-Progress Posters, 29th International Symposium on Combustion, 4-12-1423, 2002.
  • [18] Eng J. A., Leppard W. R., Sloane T. M., The Effect of POx on the Autoignition Chemistry of n-Heptane in an HCCI Engine, Proceedings of SAE Japan, 25-02, 2002.
  • [19] Jost W., Low Temperature Oxidation, Gordon and Breach Science Publishers, 1965.
  • [20] Shudo T., An HCCI Combustion Engine System Fueled with Onboard-Reformed Gases of Methanol−Ignition Control by Hydrogen−, Journal of Society ofAutomotive Engineers of Japan (in Japanese), 58-9, 2004.
  • [21] Shudo T., Ono Y., Takahashi T., Ignition Control by DME-Reformed Gas in HCCI Combustion of DME, SAE Technical Paper, 2003-01-1824, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0022-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.