PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A rational B-Spline curves in robot collision - free movement planning

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper there is described the using of 2D robot workspace analysis method with smoothing process by using B-Spline curves [7]. The robot workspace analysis is necessary to generate the collision-free movement paths. This paper is connected with a project, which will be ended with fully functional added application in robot off-line programming. In the last part of this project the authors created the motion planner based on grading function and Markov chains. This planner allows determining the collision-free trajectory of robot bunch. Determining the collision-free trajectory generates a lot of step functions – all movements were possible in only one direction (parallel to Cartesian axes) [1,7]. The worked out planner choose the best path – by shortest movement length or shortest movement time criterion. Achieved path is optimised and smooth by using NURBS and B-Spline curves [2,4,5], which is the main goal of this paper. Smoothing and time-function making is very important, because it allows getting the speed and acceleration data, which are necessary in robot controlling. B-Spline curves fulfil continuous first and second derivate condition. Another advantage of using B-Spline is a possibility to enlarge the movement quality by using the minimal acceleration criteria. This allows growing the steadiness of movement.
Twórcy
autor
autor
  • Ph.D. student at the Silesian Technical University, Institute of Engineering Processes Automation and Integrated Manufacturing Systems, ul. Konarskiego 18A, 44-100 Gliwice, Poland, daniel.reclik@polsl.pl
Bibliografia
  • [1] Latombe J.-C., Robot motion planning, Kluwer Academic Publishers, Boston-London 1993.
  • [2] Rosen K.H., Discrete Mathematics and Its Applications, 2ndedition, McGraw-Hill Publishing, New Yersey 1991.
  • [3] Piegl L., Tiller W., The NURBS book, Springer-Verlag Publishing, Berlin-Heidelberg 2005.
  • [4] de Berg M., van Kreveld M., Overmars M., Schwarzkopf 0., Computational geometry algorithms and applications, Springer-Verlag Publishing, Berlin-Heidelberg 2000.
  • [5] Predarata F.P., Shamos M.T., Computationai geometry an introduction, Springer-Verlag Publishing, New York 1985.
  • [6] Kost G., Zdanowicz R., "Modeling of manufacturing systems and robot motions", Journal of Materials Processing Technology, Elsevrier, vol. 164-165, May 2005, pp.1369-1378.
  • [7] Boissonat J.D., Budrick J., Goldberg K., Algorithmic Foundations of Robotics V, Springer tracts i n advanced robotics 7, Springer-Verlag Publishing, Berlin-Heidelberg 2004.
  • [8] Kost G.G., The based on grading function and Markov Chains stationary and manipulation robots safety move-ment planning, Wydawnictwo Politechniki Śląskiej, Gliwice 2004 (in Polish).
  • [9] Fortuna Z., Macukow B., Wąsowski 3., The numerical methods, PWN, Warszawa 1999 (in Polish).
  • [10] Majchrzak E., Mochnacki B., The numerical methods. Theoretical foundations, practical aspects and algorithms, Wydawnictwo Politechniki Śląskiej, Gliwice 2004 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0020-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.