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Abstract:

Large indoor environments of a mobile robot usually
consist of different types of areas connected together. The
structure of a corridor differs from a room, a main hall or
laboratory. A method for online classification of these
areas using a laser scanner is presented in this paper. This
classification can reduce the search space of localization
module to a great extent making the navigation system
efficient. The intention was to make the classification of
a sensor observation in a fast and real-time fashion and
immediately on its arrival in the sensor frame. Our appro-
ach combines both the feature based and statistical
approaches. We extract some vital features of lines and
corners with attributes such as average length of lines and
distance between corners from the raw laser data and
classify the observation based on these features. Bootstrap
method is used to get a robust correlation of features from
training data and finally Principal Component Analysis
(PCA) is used to model the environment. In PCA, the under-
lying assumption is that data is coming from a multivariate
normal distribution. The use of bootstrap method makes it
possible to use the observations data set, which is not
necessarily normally distributed. This technique lifts up the
normality assumption and reduces the computational cost
further as compared to the PCA techniques based on raw
sensor data and can be easily implemented in moderately
complex indoor environment. The knowledge of the envi-
ronment can also be up-dated in an adaptive fashion.
Results of experimentation in a simulated hospital building
under varying environmental conditions using a real-time
robotic software Player/Stage are shown.

Keywords: mobile robot environment, PCA, classification,
feature extraction, training data, bootstrap method

1. Introductions and Related Work

Mobile robots have many applications like office
delivery, building security, and transportation in mining,
as straddles for container stacking in ships and others.
Localization is the ability of a mobile robot to know its
position during navigation. In indoor environments, GPS
cannot be used and the ability to localize becomes
crucial. Localization means finding a three dimensional
state vector [x, y, 0] at the current time. Although
a robot used for mail delivery may remain in a more
structured office like environment but usually large
buildings such as hospitals, universities, hotels etc have
different areas linked together and a mobile robot has to
move across different types of environments such as
rooms, corridors and laboratories. For example a wheel-
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chair moving in a hospital may come across these diffe-
rent areas of the same hospital building. A patient may be
taken from a room through a corridor to laboratory and so
on. In such hospital like environment, the localization
task can be simplified by dividing the environment on top
level. This will result in a reduced search space on a prior
map. Some researchers have attempted the pose estima-
tion problem for a mobile robot in an indoor environment
using PCA. Pourraz [1] used an approach based on lear-
ning the scene by taking large number of images in the
environment and then by reducing the dimensionality.
Similarly Crowley [2] used PCA for the localization.
An incremental strategy has been proposed by Artac [3]
and [4] based on partial image updating. Jogan [5] also
presented an appearance-based model of the environ-
ment using the panoramic snapshots. The model is then
constructed by using approximation of this set of images.
This is represented by principal components (also called
eigenvectors) spanning the low dimensional space (also
called eigenspace). Similarly Crowley [2], Krose[6], Artac
[7] and Vlassis [8] used Principal component analysis for
environment modelling and mobile robot localization.
Weckesser [9] and Wu [10] presented sensor fusion tech-
niques for constructing environment models. Rolfes[11]
used random sets to statistically model the environment.
Gasos[12] used fuzzy sets to represent the uncertainty in
the environment. More recently [13] presented an action
based environment modelling. The ultimate goal of all
these techniques is to build a map to be used for location
estimation and navigation of a mobile robot. However
there are two main problems of perceptual aliasing and
image variability as discussed in [14] which cause
difficulties in making a model. We make the classification
based on the variation in some correlated features. The
variation is captured by principal components of feature
data. We use a two-step process to accomplish this. PCA
[15] is one of the oldest and best-known techniques for
analysis of multivariate data. This has been used in many
fields such as image analysis, climate analysis, chemo-
metrics etc. The central idea of PCA is to reduce the
dimensionality of a data set in which there are a large
number of correlated variables while retaining the
maximum of their variation. PCA analysis is a two-step
process. The environment of the mobile robot is learned
in the first step by taking a number of images or sensor
measurements. The data obtained in this fashion is usu-
ally of many dimensions. Then these sensor observations
are represented on an orthogonal basis of reduced dimen-
sionality. The main objective of making the future infe-
rences is achieved based on this data set. If a data set has
n components then we need nxn matrix to take into
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account the variation of data, if we use variance cova-
riance based approaches. The aim is to reduce the dimen-
sionality from 7 to p where p is much less than n(p<n).
In the method proposed here we extract first some valu-
able features from the environment using a feature
extraction algorithm presented in [16] and then make
use of two techniques namely bootstrap and PCA to get
the classification of observations in some sensible
fashion so that future observations may be able to
classify within these groups in an online real-time
manner.

2. Feature Based PCA

Principal Component Analysis (PCA) is a technique for
multivariate analysis. The recommended reference is the
book by Jolliffe [15]. The central idea of PCA is to reduce
the dimensionality of any data set (in which there are
large number of correlated variables), while still retain-
ing the maximum variation present in the data. This
reduction is achieved by transforming to a new set of
variables, which are termed as principal components.
These principal components are uncorrelated. In this way
we can identify the patterns in the data and we can
detect the similarities/dissimilarities. Usually a training
data is used to model the system (The system in our case
is the environment of a mobile robot), and then future
inferences, about the incoming data, can be made using
this model. These inferences could be just for the classi-
fication purpose or for any type of further investigations,
which is of interest to us.

It is always desirable to use the raw laser data if pos-
sible because it contains the maximum information about
the environment. The methods based on feature extrac-
tion are highly sensitive to outliers and hence their robu-
stness is arguable. But use of raw laser data demands
high processing power, which is usually not available in
many applications. Dimensionality is referred here as
the dimensionality of sensor data. Here we are using
a feature-based approach and hence the number of
features used for analysis will define the dimensions of
data space. We are using LRF from SICK electro-optics
with the resolution of 0.5° and it covers a field of view of
180°. Thus we get 361 range measurements z, in the form
of (,,0). Laser provides highly accurate and reliable data.
The detailed characteristics can be seenin [17]. The data
from laser scanner is obtained in a particular sequence.
The first range measurement is at and angle of -90° and
then all the way to 90° at aninterval of 0.5°.

2.1. Principal Components

Let us say we have v random variables stored in the
observation vector Z. Now if v is large then the variance-
covariance way of getting the structure of the data would
be very difficult. It would be much useful to get u such
that u is much less than v or (u < v). The intention is to
find a set of (up to u) linear functions namely o, .....o,
of the elements of z (where T denotes the transpose),
such that they are uncorrelated and capture maximum
variability of the data:

T § :
A1Z = 0112 + 1222 + .ennnnn. + Q210 = a1;%;
i=1
v
T
QpZ = (o121 + Qo929 + ...ee. + Qo 2oy = g V9; Z;
i=1
v
T § :
LWZ = Q121 + 229 +enennnn. + Oy 2y = Qi 24
i=1

The first function o has the maximum variance (it
captures the maximum variability of the data). Then the
others in the descending order. All these are called the
principal components (PCs). Total of upto v PCs can be
found but the expectation is that only u will capture the
maximum amount of variability in the data and (u <v).

2.2. Feature Definition

Let us say that initially we defined 6 features to be
detected in each laser scan. These were: number of
straight lines, number of corners, Average distance bet-
ween adjacent corners in distance units, Average length of
line in distance units, Slope of the largest line, Length of
the largest line in distance units. The usefulness of these
features was tested and after an investigation presented
in [18], the fifth feature was discarded and the remaining
five were taken for further analysis. As an example, Fig-1
shows a simulated robot and the feature extracted from
laser scan. Five line segments (at locations 1 to 5) and
three corners were found at locations 1, 2 and 4. Other
features described above (note that those are mostly the
attributes of lines and corners) can also be found for all
the locations used to get the training data.

3. Training

Data were collected at three different types of envi-
ronment namely in a relatively simple structured room, in
a corridor and in a complex laboratory like environment.
The map used in simulation was of a hospital building pro-
vided with the Player/Stage [19] robotic simulator. Then
the next step is where in each of these environmental
sections, the robot would acquire the training data. The
important considerations are the capability of the sen-
sors, the quantity of training data, which we decided to
obtain, the navigational strategy which is being imple-
mented. In the hospital map used, the corridor is parallel
to the x-axis, so we can get data at few locations along
the corridor at an angle of 0° or 180°. Usually the rooms
for patients in a hospital only differ slightly in overall
structure and size. The poses were selected in an attempt
to capture most of the variability. The complex environ-
ment is one, which is large and has more number of basic
features at varying relative positions (not in repeating
patterns).

3.1. Assumptions

It is assumed that the environment of the mobile
robot is static. And also it is obvious that the small sample
size was used based on the assumption that many patches
of the environment are similar in structure or at least do
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Fig. 1. (a) Robot equipped with a laser scanner, navigating in a corridor of a hospital building, (b) Feature extracted from
laser data. Different things were checked by putting ther obotin various locations and extracting features, to see the
robustness of feature extraction algorithm. A star shows that the algorithm detects a corner, and the detected lines

are represented by light gray color, also the points (dots) beneath these lines are the range points.
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Fig. 2. This figure shows one observation point at three different areas during training session. (a) Corridor, (b) Room,
(c) Very complex Laboratory environment. The top row shows the robot in hospital. Second row shows the zoomed view
and the last row shows the extracted features in the sensor frame.
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not change significantly. If the environment is very
dynamic, this method may still work with some special
arrangements. For example people walking on the floor
adds to the complexity but the walls near the roof are
clutter free. If we could mount the laser scanner in that
direction, our static environment assumption may not
cause any problem. But this was not tested in this work.
At present most techniques treat the complexity such as
moving objects and walking people as noise. The size of
the hospital map used in the simulation was 100 min both
directions. If a robot occupies 1 m* space then in an area
of 100 m x 100 m and with a resolution of 6°, there could
be a total of 600000 possible poses. Getting the training
data for all these poses is nearly impossible in real
environment and time consuming even in simulation. To
mitigate the effect of small sample size, a technique
called bootstrapping was used as explained below.

3.2. Bootstrap Method

It is not viable to train using complete set of possible
poses in a potential indoor environment. A technique
called bootstrapping may be used to mitigate the effect.
This was initially introduced by Efron and later used by
many researchers and is discussed in [20]. In bootstrap
methods, we can evaluate any statistics from a limited
samples treated as pseudo-population. The main reason
for using bootstrap is that for PCA, it is assumed that the
underlying distribution is a multivariate normal which is
usually not true. In the bootstrap analysis, we do not need
to assume that the data is coming from and underlying
normal or any other parametric distribution. Having
observed a set of random samples of size 1, we can define
an empirical distribution and can calculate its standard
error and confidence intervals. However we first use to
calculate the mean of the feature vectors. If the envi-
ronment is to be classified in k different environment and
we decided to use n features then from the training data
set, k x n mean values would be calculated from as many
feature vectors using 300 bootstrap samples (samples
with replacement), from each of these vectors. This num-
ber was used based on the discussion, which can be found
in [20].

4. PCA Based Classification Method

Even with a static assumption, the environment is
very complex and simple variances and co-variances
based analysis is not much useful for discrimination bet-
ween different parts of the environment even in the
broader sense. The motivation to use the PCA is to
estimate a linear function o z of z that captures the
maxi-mum of variance present in its components subject
to being uncorrelated with some more similar linear func-
tions. Here T  denotes the transpose and o, is a vector of
v constants because v features are being carried forward.

v
OCTZ: E a1;24
i=1

If we take v features (in our experimentation v = 5),
then possibly there could be v such uncorrelated func-
tions called PC's which form the columns of a matrix say
A, but usually first few (say u) capture most of the

variability of the data. This matrix A can be found from
the covariance matrix of z (which would be replaced by
feature matrix F or F in standardized form in the follo-
wing discussion). Lets call this covariance matrix C. The
(i,j)th element of C is the covariance between the i,z and
J.h dimension and is given by:

m

1
Cig = ;(Zz‘j —2;)(2ir, — Zx) (1)
and
CA=AA (2)

A is the matrix of eigenvectors of this covariance
matrix and A is the diagonal matrix whose kth diagonal
element o, is kth eigenvalue of C and denotes var(oy, ).
In our case covariance matrix has five eigenvalues. We
call these values as a,....a, labelled in decreasing order of
magnitude. o, is an eigenvector of C i.e a column of A
which corresponds to the largest eigenvalue A,. The
eigenvalues and eigenvectors are actually computed by
a complicated series of algebraic manipulations requiring
on the order of n’ calculations when C is a nxn matrix.
Therefore after the proposed feature extraction, the di-
mensionality of laser data reduces drastically and hence
the computational time. This method can therefore be
used in an adaptive manner to update the representation
of the environment. Supposing that the environment is
to be classified in k different areas. In our experimen-
tation, k = 3 and the areas are corridor, room and labo-
ratory. Training data set was obtained in these three
types of areas. It has also decided that n features would
be extracted from every sensor observation. For simpli-
city we assume that we take equal number of m observa-
tions in all these areas. The data collected at these loca-
tions would be stored in three different matrices each
having n columns and m rows. Let us use the superscript
C, R or L denoting corridor, room and lab respectively
(not as a power but simply a character). Denoting these
three matricesby F',, F,and F:

FC . FC
Fi1 =
RO RC
PR RR
Fo = ( : : ) 3)
FR . RR
P FL
Fs = R )
FLoRL

And in vector form, this can be written as:
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Fi = [FC ... FO]
Fo = [ PR ... FE] (4)
Fs = [ FL FE

These are x X n vectors, each of length m. The com-
plete feature matrix F' of the environment is then
obtained by augmenting these three matrices:

F1
r = F2 (5)
Fs3

If m measurements of n features were taken in x
different areas of the environment then this matrix would
have x x m rows and z columns.

4.1. Stepwise Procedure

1. First we determine the bootstrap mean of these x xn
vectors and put the values in a matrix. Let us call the
matrix of these values as our basic matrix B,
obviously of the same dimensions k x 7.

MFlc ........... /,LFT?’
B = HpReeeeene. HEER (6)
/LFIL ........... HFL

Here 1y, (where i=1,2,.n and j=C,R,L) are the
bootstrap means obtained by taking 300 samples with
replacement from vectors of (4).

2. The purpose of B is to find the model parameters.
Mean and standard deviation of each column of B
would be used for standardization. The next step is
the standardization of the matrix F. Let the standa-
rdized basic matrix be denoted by F'. To find this from
B, the mean of each column of B would be calculated
and subtracted from every element of the same
column of matrix F. The difference would then be
divided by the standard deviation of that column of
B. This will result the standardized value for every
element.

2. Find the covariance matrix of F.. This is the matrix C
of (2).

4. Find the matrix of eigenvalues A and matrix of
eigenvectors A of the covariance matrix C. Matrix A
of eigenvalues would be a diagonal matrix. Each of

detailed discussion can be found in[15]. For this we
first decide how much variation of the environment
we want to capture (usually 70 to 90 percent is a rea-
sonable value). Then the required principal compo-
nents are the smallest value for which this chosen
percentage is exceeded. We can check the amount of
variation which is captured by each of the principal
components o,...o,. If A, is the largest eigenvalue
and 0is the ratio of the largest to total of
eigenvalues, then

N
Z?:l Ai

gives us the percentage of variation captured by first
principal component. We got reasonable value of 0.81
captured by o, and o,. The confidence in this value
can also be calculated using bootstrap. The detailed
discussion of whether the two PCs are sufficient can
also be found in [15]. Now we decided to take only
first two principal components. we define n,.= Num-
ber of principal components considered for model-
ling. The matrix containing these two PCs as columns
is denoted by N, which is given by.

é:

N: [O[l 062}
Matrix N would be of size n xnp.

Now the training data, which is in the standardized
matrix F,, would be transformed using this matrix N.
and we get the transformed data matrix t.

T=N"F] (7)

This matrix T will have the rows equals to n,., and
columns equals to k x m. The transformed training
data will be stored in matrix T and there would be
three separate sub-matrices inside T and there sizes
and positions can be imagined like this:

Room Lab Corridor
T = (8)
anXm\nPCXm\anXm
—_—_—— —

It would be convenient to denote each of these by 1,
T, and 1., each of size n,. xm.

. After the transformation, we have the feature data

transformed to the frame of principal components.
We can look for any clustering of the transformed
feature vectors. And if found then we use a metric to
classify the future oncoming observation into one of
K areas.

the diagonal entry is an eigenvalue and has a corres-
ponding vector (a column) in matrix A .

. The eigenvector, which corresponds to the highest

eigenvalue, is the first principal component denoted
by o, and so on. At this point, the question is that
how many principal components should we use. The
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4.2, Classification

The important model parameters were found using
the matrix B above. Each column provides the mean and
standard deviation of each feature. Note that this is not
the bootstrap mean. Bootstrap means are calculated for
individual elements of matrix B. The means and standard
deviations of columns would be used to standardize the
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online sensor observation. When a sensor observation
arrives, the feature extraction would be carried out and
then following steps would be performed:

1. Let the laser sensor observes the environment and
after feature extraction, the observation is denoted
by Q= (F1,F2,...,Fn) having size 1xn.

2. Standardize the observation by taking the difference
of each feature value and the mean of the corres-
ponding column of B and dividing this difference by
the standard deviation of that column. This is deno-
ted by Q,having same size 1xn.

3. Transform the standardized observation using all PCs
or just the first two PCs. This is denoted by Q, andis
obtained by:

Qs = NTQST
This transformed observation Q is a single column
vector having rows equaltorn,.i.e. 2in our case.

4. Find three vectors of Euclidean distances between the

vector QT i and the columns of three sub-matrices
Tx, T, and 1., shown in 8 and take the average.

4.3. Algorithm

D,= Average distance between Qf and the columns
of 1. .

D, = Average distance between Q' and the columns
of 1,. .

D= Average distance between Q' and the columns
of T..

The minimum of these distances implies a close asso-
ciation of the current observation with that area of the
environment on principal component axis. If two PC's are
used, this can easily be seen in a graphical represe-
ntation. But for more PC's, techniques such as biplots can
be used for graphical representation but it's hard to
visualize the closeness in high dimensional data. Classi-
fication, which we get, can be used in many ways. Each
observation will give us some features and similar featu-
res would represent the same (or closer) point in the
eigenspace. The other and more general way, which we
used here, is to make a grid of poses such that minimum
variation of observation (in eigenspace) is present in
nearest poses. This makes the position tracker more
robust.

Algorithm 1: PCA Based Classification of Environment

Data: Model data obtained during training (matrix /-~ of Eq-5) and current real-time sensor observation
Result: Location of the robot in one of the three broader Environment Classes (Areas).

Initialization :

1. Get matrix B (Eq-6)from training data as explained above.

. Standardize B and get [ .

. Set npc = 2 (Assuming 2 PC’s capture the desired variation)

2
3
4. Find the covariance matrix of F ¢. This is the matrix C of Eq-(2).
5

. Find the matrix of eigen values A and matrix of eigen vectors A of the covariance matrix C.

6. Find the matrix NV of first 2 PC’s a1 and a. Transform [ using this matrix NV, and get 7 using Eq-7.

while Navigating do

3. Transform @ using Eq-9 and get Qs

case Dpr
The robot is in the room;

break;

case D¢
The robot is in the corridor;

break;

otherwise

end

end

end

switch (The minimum of Dg, Dy, and D¢) do

1. Get the current sensor observation () in the form of a row vector of features having size 1 x n.

2. Standardize this observation and get (), using either of the two methods (one describe in Step-2
of procedure and the other in section 5.3.)

4. Find the values of Dg, D, and D and the minimum of these three.

| (Obviously Dy, would be minimum). The robot is in the Laboratory
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5. Experimental validation

We used a simulated robot equipped with a laser scan-
ner under a real-time software Player/Stage [19]. The
advantage of using simulation is that we can easily
change the environment of the robot and verify the
robustness. Before going for the validation of modelling,
we need to check the robustness of feature extraction
algorithm. We put the robot in different locations using a
map. The locations were chosen intelligently in an effort
to detect any flaws in the algorithm meaning any
situations in which it might fail. As compare to real
environment, the situation here was different and
favourable, because while using a map, we know how
many lines are there and what is the location and other
attributes of these lines. We can therefore easily compare

Table 1. Feature matrix F of the environment.

Room

I
les]
N

F3 F4 F6

2007 | 1845 | 6677

2128 | 1520 | 5694
2128 | 1611 | 6333
3280 | 3269 | 7797
1682 | 3073 | 7797
2231 | 2973 | 7797

906 3269 | 7797
873 3277 | 7797
906 3269 | 7797
859 2850 | 7797

Lab

(U, BV I B I LV B B B L B e N B B B N |
W | W | W | W[ || W[k~ B~Ww

13 |6 2085 | 882 3737
14 | 8 1350 | 928 2730
7 3 2130 | 945 2011
7 4 2350 | 970 2407
6 2 5970 | 2394 | 5791
14 |8 1723 | 1222 | 2575
7 1 0 1378 | 3121
6 2 8242 | 2448 | 7602
10 | 4 3386 | 1268 | 4615
14 |6 2493 | 951 2450
Corridor
Fl | F2 | F3 F4 F6
9 3027 | 1423 | 3386

2346 | 1431 | 3667
2273 | 890 3587
1624 | 1408 | 5466
2651 | 748 2265
2927 | 931 2180
2535 | 946 2437
1189 | 1690 | 2882
1156 | 1495 | 1961

—
—_
O I S T B S R v i v u e N B O R N

4436 | 2019 | 3983
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the actual and detected features. So we are able to check
the accuracy and be sure that the algorithm detects the
correct features. The results were excellent, and we were
able to detect exactly the same lines as there were in the
map. In some cases however, we got two/three small
linesinstead of a single long one. Merging can rectify this
problem. We are positive that this type of merging is
required seldom and will not affect the performance.
There are many ways of representing the multidimen-
sional data but we shall use the biplots.

5.1. The Experimental Data

The matrix of feature data collected for training is
shown in Table-1. After standardization, we obtain the
matrix shown in Table-2.

Table 2. Standardized feature matrix F, of the environment.

Room
Fl1 F2 F3 F4 F6
-0.3328 | 0.5332 -0.2220 | 0.0773 0.8613
-0.3328 | O -0.1465 | -0.2944 | 0.4247
-0.3328 | 0 -0.1465 | -0.1903 | 0.7085
-0.6448 | -0.5332 | 0.5716 1.7059 1.3588
-0.9569 | -1.0664 | -0.4246 1.4817 1.3588
-0.9569 | -1.0664 | -0.0823 1.3673 1.3588
-0.9569 | -0.5332 | -0.9083 1.7059 1.3588
-0.9569 | -0.5332 | -0.9289 1.7150 1.3588
-0.9569 | -0.5332 | -0.9083 1.7059 1.3588
-0.9569 | -0.5332 | -0.9376 1.2267 1.3588
Lab
Fl1 F2 F3 F4 F6
1.5393 1.0664 -0.1734 | -1.0241 | -0.4446
1.8513 2.1328 -0.6315 | -0.9715 | -0.8918
-0.3328 | -0.5332 | -0.1453 | -0.9520 | -1.2112
-0.3328 | 0 -0.0082 | -0.9234 | -1.0353
-0.6448 | -1.0664 | 2.2484 0.7052 0.4678
1.8513 2.1328 -0.3990 | -0.6352 | -0.9607
-0.3328 | -1.5996 | -1.4730 | -0.4568 | -0.7182
-0.6448 | -1.0664 | 3.6646 0.7669 1.2722
0.6032 0 0.6376 -0.5826 | -0.0546
1.8513 1.0664 0.0810 -0.9452 | -1.0162
Corridor

Fl1 F2 F3 F4 F6
0.2912 0 0.4138 -0.4054 | -0.6005
0.2912 0.5332 -0.0107 | -0.3962 | -0.4757
-0.0208 | 0 -0.0562 | -1.0149 | -0.5112
0.6032 0.5332 -0.4607 | -0.4225 | 0.3234
0.9153 0.5332 0.1795 -1.1773 | -1.0984
1.2273 1.5996 0.3515 -0.9680 | -1.1361
1.5393 1.5996 0.1072 -0.9509 | -1.0220
-1.2689 | -1.0664 | -0.7319 | -0.1000 | -0.8243
-1.2689 | -1.0664 | -0.7524 | -0.3230 | -1.2334
-0.3328 | -0.5332 | 1.2921 0.2763 -0.3353
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5.2. Results for Simple and Complex Environment
Although a relatively small data set was used for
training purpose but in simple environments classifica-
tion was accurate. Even without any assistance of motion
model, for the case of room around 70% of the time, the
algorithm was able to correctly identify the location from
where observation was coming. Similarly for simple room,
the success rate was nearly 60%. However the method
was failed to classify the observation coming from a com-
plex laboratory environment and this was expected with
this simple and efficient strategy. Two different programs
were made, one using two PC's and the other using all the
5 PC's. There was no significance difference and the
outcome was nearly the same. This fact was also clear by
plotting all three types of observations in the frame of
principal components. It can be seen that the laboratory
data were scattered all over the graph while the observa-
tions from a room and corridor were somewhat clustered.
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This can be seen in Fig-3 shows the graphical represen-
tation of the training data set when two PC's were used
for transformation. The resulting 2-D vectors were plot-
ted and hence the axis are shown as PC1 and PC2 due to
the fact that the 2-D transformed vector has been
obtained using the first two PC's. In Fig-3-(a), the data
from room is plotted red, from the corridor in blue and
from lab as magenta. In Fig-3-(b), the data points from
three areas were joined in a fashion that the rest of the
entries are within the respective boundaries. It can be
seen that with the exception of outliers, the room and
corridor data falls in different and separate regions of the
plot. But the data from lab shares a common region. This
means that the lab data is hard to distinguish. This is
because we are taking the average minimum Euclidian
distance as a metric, which is efficient but has the
limitations to handle complex environments.
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Fig. 3. This figure shows the training data drawn in the frame of first two principal components. Instead of xy-plane, this
is the plane of first 2PCs. The data was standardized using B as described in step-2 of Procedure. (b) Outer observations

were joined to get a cluster-like region.
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Fig. 4. This figure shows the training data drawn in the frame of first two principal components. Instead of xy-plane, this

is the plane of first 2PCs. The data was standardized using F as Method-2 above. (b) Outer observations were joined to get

a cluster-like region.
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5.3. Method-2 for Standardization

In step (2) of procedure described above, mean and
standard deviation of each column of B was used for
standardization. Instead the mean and standard devia-
tion of the columns of the matrix F itself can also be used
to get F.. To find this the mean of each column of F' would
be calculated and subtracted from every element of the
same column. The difference would then be divided by
the standard deviation of that column of F. This will
result the standardized value for every element. This
approach resulted in reduced differences between the
values of D,, D, and D. and some outliers were also
removed as can be seen in Fig-4. The outliers were
removed but the observations from complex environment
were still misclassified. And exactly the same number of
observations was correctly classified for simple environ-
ments. The method proved to be robust for simple envi-
ronment and can be used efficiently for a well-structured
environments but is not capable of handling the complex
environments. The solution to this problem is discussed
in last section.

6. Conclusion and future work

The use of principal component analysis for the clas-
sification of the environment of a mobile robot is investi-
gated. The training data was obtained in a simulated
hospital building. The environment was divided in three
different areas. PCA is a proven method of dimensional
reduction and the intention was to get the environment
perception for mobile robot navigation. The data hand-
ling capability of laser scanners is enormous. A huge
amount of data is produced within a second. With this
much data, interpretation is quite difficult and the di-
mension reduction leads to loss of discriminatory infor-
mation. However After a series of experiments with data
obtained from different environments, it was found that
the method has good potential for structured environ-
ment. It can be used to distinguish between simple and
static environments but it was found that this might not
be used for complex environments without a special ar-
rangement described earlier. Other improvements, which
come to mind for complex environments, are the use of
some more feature definitions and the use of very large
training data. But defining more features will also impose
some problems in regards to outliers and this should
be kept in mind. The method does converges to a pose
with acceptable error in simple static environment and
a reasonable size of state decomposition if a motion
model assisted with a prior map is used. There are two
criticisms about PCA based methods and we tried to fix
these problems. One issue is the underlying assumption
of multivariate normality and the other is the outlier
issue. Both of these issues are discussed in detail in [15]
and the proposed solution was to use a robust way to
calculate the covariance matrix. We used a novel appro-
ach of bootstrapping to overcome the issue of multiva-
riate normality and we found the covariance, which is
arobust way, but it was found that the effect of outliers is
greater than the expected. The major problem in detec-
ting an outlier in a multivariate date is that the observed
value may not be inconsistent on individual variable
basis but actually it is inconsistent with the correlation
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structure of the data and hence is an outlier. This type of
outlier is really very difficult to detect. Since the volume
of laser data is huge and as the amount of data increases,
more outliers are also included in the data, and handling
of outliers become an issue. These outliers can be treated
and many ways have been proposed in the literature but
the attempt to handle the outliers increases the compu-
tational burden and raises the efficiency issues. The im-
provements that come to mind are the use of some more
feature definitions and the use of very large training
data. But defining more features will also impose some
problems in regards to outliers.
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