PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of dust lifting process from the layer behind propagating shock wave

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The numerical simulations of physical processes constitute a great challenge for scientists. Many new models have been being developed and the ones that already exist are being improved. Many experiments are no longer needed to be performed in reality but can be replaced by numerical simulations. Many others that could not be done up to now, due to high cost or technical unfeasibility, can be performed using numerical models. Despite that many problems have not been fully resolved lots of work is still to be done. One of the phenomena that has not been fully explained and properly modeled - is the dust listing process from the layer. In the current research, the model of dust lifting process has been developed where the dust is not modeled directly but replaced by an injection of dust from the bottom of the channel. The parameters of the dust injection were obtained from previous experiments. The main advantage of this approach is the possibility of using sparse meshes which are required in modeling of large scale geometries. The model was implemented in a CFD code and calculations were made to test the ability of the model to simulate dust dispersion from a layer in a shock tube. The results were compared with the experimental data and a good agreement was concluded
Twórcy
autor
autor
  • Warsaw University of Technology, Institute of Heat Engineering Nowowiejska Street 21-25, 00-665 Warsaw, Poland tel.+48 22 6605298, fax: +48 22 8250565, pzydak@itc.pw.edu.pl
Bibliografia
  • [1] Kosinski P., Klemens R., Wolanski P., Potential of mathematical modelling in large-scale dust explosions J. Phys. IV France 12, 7-125, 2002.
  • [2] Crowe C, Sommerfeld M., Tsuji Y., Multiphase Flows with Droplets and Particles. CRC Press LLC, Boca Raton, Florida, USA, 1998.
  • [3] Klemens R., Kosinski P., Oleszczak P., Mathematical modelling of dust layer dispersion due to rarefaction waves Archivum Combustionis, vol. 22-2002, No. 1-2, pp. 3-12, 2002.
  • [4] Klemens R., Kosinski P,, Wolanski P., Korobeinkov V. P., Markov V. V., Menshov I. S., On Modeling of Shock Waves Interactions with Dusty Gas Layers. Proceedings of 18th International Colloquium on the Dynamics of Explosion and Reactive Systems, Seattle, USA, 2001.
  • [5] Kosinski P., Hoffmann A. C., Klemens R., Dust lifting behind shock waves: comparison of two modelling techniques Chemical Engineering Science 60 5219-5230, 2005.
  • [6] Fedorov A. V., Mixing in wave processes propagating in gas mixtures (review). Combustion, Explosion, and Shock Waves, Vol. 40, No. 1 pp. 17-31, 2004.
  • [7] Gerrard J. H., An experimental investigation of the initial stages of the dispersion of dust by shock waves. British Journal of Applied Physique, 14, No. 4, 186-192, 1963.
  • [8] Fletcher B., Safety in Mines Research Establishment. SMRE Technical Paper P12. Sheffield, 1974.
  • [9] Fletcher B., The interaction of a shock with a dust deposit Journal Phys. D: Appl. Phys., 9, No. 2, 197-202, 1976.
  • [10] Boiko V. M., Papyrin A. N., Dynamics of the formation of a gas suspension behind a shock wave sliding over the suface of a loose material Combustion Explosion Shock Waves, 23, No. 2, 231-235, 1987.
  • [11] Suzuki T., Takashi A., The Effects of Particle Size on Shock Wave Dust Deposit Interaction. Proc. of the 14th International Symposium on Space Technology and Science, Tokyo, p. 483-490, 1984.
  • [12] Klemens R., Zydak P., Kaluzny M., Litwin D., Wolanski P., Dynamics of dust dispersion from the layer behind the propagating shock wave Journal of Loss Prevention in the Process Industries, 10/2-3, pp. 200-209, 2006.
  • [13] Klemens R., Zydak P., Kaluzny M., Litwin D., Wolanski P., Mechanism of Dust Dispersing from the Layer by Propagating Shock Wave in the Flow without Obstacles, Proc. of the 5th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, Cracow, Poland, p. 189-198, 2004.
  • [14] Klemens R., Zydak P., Litwin D., Wolanski P., Mechanism of Dust Dispersing from the Layer by Propagating Shock Wave. Proc. of the Seventh Asia-Pacific International Symposium on Combustion and Energy Utilization (7th APISCEU), Hong Kong, China, 2004 (available on CD disk).
  • [15] Klemens R., Zydak P., Mechanism and Modeling of Dust Cloud Formation from Dust Layers. Proceedings of International Symposium on Process Safety and Industrial Explosion Protection, Nurnberga, Germany, 2005.
  • [16] Matsui H., Structure and Propagation Mechanism of the Soot Layer Detonation. Proc. of Research on the Processes of Combustions and Modelling of Fires, Khabarovsk, p. 57–62, 1992.
  • [17] Klemens R., Johnston V., Aleksander C., Youchen Li., Kauffman C. W., Sichel M., Flame Acceleration in a Grain Dust–Air Mixtures in a Long Horizontal Tube. Proceedings of the Fourth International Colloquium on Dust Explosions, Porabka-Kozubnik, Poland, p. 338-354, 1990.
  • [18] Li Y.-C., Harbaugh A. S., Alexander C. G., Kauffman C. W., Sichel M., Deflagraion to detonation transition fueled by dust layers Shock Waves, 5, 249–258, 1995.
  • [19] Goldschmidt M. J. V., Beetstra R., Kuipers J. A. M., Hydrodynamic modelling of dense gas-fluidised beds: comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations Chemical Engineering Science 57 2059-2075, 2002..
  • [20] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Verlag, 1997.
  • [21] Collins J. P., Fergusson J. P., Chien K. Y., Kuhl A. L., Krispin J., Glaz H. M., Simulation of shock-induced dusty gas flows using various models AIAA 94-2309, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0019-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.