Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Elimination of volumetric locking in triangular and tetrahedral linaer elements. Aplication to simulation of metal forming processes
Języki publikacji
Abstrakty
The authors deal with the numerical problem of volumetric locking occurring in finite element simulation of metal forming processes and other problems characterized with incompressible deformation. Volumetric locking is present in all finite elements based on the standard displacement formulation as well as in mixed elements using equal order interpolation for displacements and pressure. Special stabilizing techniques are necessary in order to avoid volumetric locking in such useful elements as triangles and tetrahedra with linear interpolation of displacements and pressure. An original method to eliminate volumetric locking has been developed and applied to analysis of metal forming problems. The stabilization method, called CBS (Characteristics based Split), is based on the splitting of the Stokes equations describing elasto ? plastic deformation of the material. The split algorithm has been implemented within an explicit dynamic finite element code. Numerical examples of metal forming simulation demonstrate effectiveness and correctness of the theoretical formulation and numerical algorithm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
73--89
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Instytut Podstawowych Problemów Techniki PAN, Warszawa
autor
- University of Wales, Swansea
Bibliografia
- ABAQUS - Example manual, 1996, Version 5.6, Hibbit, Karlsson & Sorensen, Inc.
- Babuśka L, 1973, The finite element method with Lagrange multipliers, Numer. Math., 20, 179-192.
- Belytschko T., Liu W.K., Moran B., 2000, Nonlinear Finite Elements for Continua and Structures, Wiley.
- Brezzi F., Pitkäranta J., 1984, On the stabilization of finite element approximations of Stokes problem, Effcient Solutions of Elliptic Problems. Notes on Numerical Fluid Mechanics, vol. 10, ed. Hackbush W., Vieweg, Wiesbaden, 11-19.
- Codina R., Vazquez M., Zienkiewicz O.C., 1995, A fractional step method for compressible flows: Boundary conditions and incompressible limit, Proc. Int. Conf. on Finite Elements in Fluids - New Trends and Applications, Venezia, 409-418.
- Erbel S., Kuczyński K., Marciniak Z., 1981, Obróbka plastyczna, PWN.
- Garcia Garino C., Oliver J., 1992a, A numerical model for elasto plastic large strain problems, Computational Plasticity, ed., Owen D.R.J. i in.
- Garcia Garino C., Oliver J., 1992b, Use of a large strain elastopla stic model for simulation of metal forming processes, NUMIFORM '92, eds., J.L. Chenot i in., Balkema.
- Garcia Garino C., 1993, A Numerical Model for the Analysis of Large Elasto-plastic Deformations of Solids, Universität Politécnica de Catalunya, Barcelona, (in Spanish).
- Hallquist J.O., 1986, NIKE2D - A Vectorized Implicit, Finite Deformation Finite Element Code for Analyzing the Static and Dynamic Response of2-D Solids with Iinteractive Rezoning and Graphics, Lawrence Livermore National Laboratory.
- Hallquist J.O., 1998, LS-DYNA. Theoretical Manual, Livermore Software Technology Corporation.
- Hughes T.J.R., Franca L.P., Balestra M., 1986, A new finite element formulation for fluid dynamics, V. Circumventing the Babuśka-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accomodating equal order interpolation, Comput. Meth. Appl. Mech. Eng., 59, 85¬99.
- Hughes T.J.R., 1987, The Finite Element Method. Linear Static and Dynamic Analysis, Prentice-Hall.
- Krupowicz A., 1986, Metody numeryczne zagadnień początkowych równań różniczkowych zwyczajnych, PWN.
- MARC/AutoForge User's Guide, 1995, Version 2.2.
- Oñate E., Agelet de Saracibar C., 1992a, Numerical modelling of sheet metal forming problems, Numerical Modelling of Material Deformation Processes: Research, Developments and Applications, ed. Hartley P. et al., Springer-Verlag.
- Oñate E., Agelet de Saracibar C., 1992b, Alternatives for finite element analysis of sheet metal forming problems, NU-MIFORM '92, eds. Chenot J.L., Wood R., Zienkiewicz O.C., Balkema.
- Oñate E., Rojek J., Garcia Garino C., 1995, NUMIS-TAMP: a research project for assesment of finite element models for stamping processes, J. Mat. Proc. Technology, 50, 1-4, 17-38.
- PAM-STAMP. User's Manual, 1998, ESI, France.
- Rojek J., Oñate E., Postek E., 1998, Application of explicit FE codes to simulation of sheet and bulk metal forming processes, J. Mat. Proc. Technology, 80-81, 620-627.
- Rojek J., 2000, Symulacja procesów obróbki plastycznej przy zastosowaniu programu MES opartego ma jawnym całkowaniu w czasie, Materiały VII Konferencji Zastosowanie Komputerów w Zakładach Przetwórstwa Metali KomPlasTech 2000, eds. Kusiak J. i in., Krynica-Czamy Potok.
- Rojek J., Zienkiewicz O.C., Oñate E., Taylor R.L., 2000, Simula-tion of metal forming using new formulation of triangular and tetrahedral elements, Proc. 8th Int. Conf. on Metal Forming, Metal Forming 2000, eds. Pietrzyk i in., Krakow.
- Zienkiewicz O.C., Codina R., 1995, A general algorithm for compressible and incompressible flow - Part I. The split, characteristic based scheme, Int. J. Num. Meth. Fluids, 20, 869-885.
- Zienkiewicz O.C., Morgan K., Satya Sai B.V.K., Coding R., Va-zquez M., 1995, A general algorithm for compressible and incompressible flow - Part I. Tests on the explicit form, Int. J. Num. Meth. Fluids, 20, 887-913.
- Zienkiewicz O.C., Rojek J., Taylor R.L., Pastor M., 1998, Triangles and tetrahedra in explicit dynamic codes for solids, Int. J. Num. Meth. Eng., 33, 565-583.
- Zienkiewicz O.C., Taylor R.L., 2000, The Finite Element Method, Butterworth-Heinemann, London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0014-0121
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.