Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Proton affinity (PA), lithium, sodium and potassium cation affinities (CA) in the gas phase were estimated by Gaussian-2 (G2), Möller-Plesset (MP2) methods and/or hybrid density functional theory calculations (B3LYP) for pyruvate and oxamate anions. Comparison of these affinities shows that the COO– groups of both anions have similar basicities. Differences between their calculated PAs as well as between their calculated CAs are not larger than 3 kcal mol–1. Somewhat larger differences are evidenced for the formations of the alkali metal complexes with the cation located between the oxygen atoms of the alfaC=O and COO– groups for which the lithium, sodium and potassium cation affinities are larger for oxamate than for pyruvate (by 40.5 kcal mol–1 at theG2 level and by 60.5 kcal mol–1 at the DFT(B3LYP)/6-31++G** level). This is a consequence of the chelate effect on the cation binding seen on the calculatedmost stable structures of the adducts.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1011--1020
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
autor
autor
autor
autor
- Department of Chemistry, Agricultural University (SGGW), ul. Nowoursynowska 159c, 02-776 Warszawa, Poland, ewa_raczynska@sggw.pl
Bibliografia
- 1. Gawlita E., Paneth P. and Anderson V.E., Biochemistry, 34,6050 (1995).
- 2. Clarke A.R., Wigley D.B., Chia W.N., Baretaw D.A., Atkinson T. and Holbrook J.J., Nature, 324,699 (1986).
- 3. 0'Carra P. And Barry S,, in: Methods in Enzymology, Jakoby M., Wilchek M. (Eds.), Academic Press, London, 1974.
- 4. Brinkworth R.I., Masters C.J. And Winzor D.J., Biochem. J., 151,631 (1975).
- 5. Sevriukov E.A. And Evseev L.R, Vopr. Med. Khim., 40,23 (1994).
- 6. Safarik I. And Safarikova M., J. Chromatogr, B772,33 (1999).
- 7. Duczmal K., Darowska M. and Raczyńska E.D., Vib. Spectrosc., 37, 77 (2005).
- 8. Tavale S.S., Pant L.M. and Biswas A.B., ActaCryst., 14, 1281 (1961).
- 9. Rach W., Kieł G. and Gattow G., Z. Anorg. Allg. Chem., 563, 87 (1988).
- 10. Aekeróy C.B., Hughes D.P. and Nieuwenhuyzen M., J. Am. Chem. Soc., 118, 10134 (1996).
- 11. Raczyńska E.D., Duczmal K. and Darowska M., Polish J. Chem., 79, 689 (2005).
- 12. Raczyńska E.D., Duczmal K. and Darowska M., Vib. Spectrosc., 39, 37 (2005).
- 13. Burk P., Koppel I.A., Koppel I., Kurg R., Gal J.-R, Maria P.-C., Herreros M., Notario R., Abboud J.-L.M, Anvia F. and Taft R.W., J. Phys. Chem. A, 104, 2824 (2000).
- 14. Mǿller C. and Plesset M.S., Phys. Rev., 46, 618 (1934).
- 15. Parr R.G. and Yang W., Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
- 16. Lee C., Yang W. and Parr R.G., Phys. Rev., 37, 785 (1988).
- 17. Becke A.D, Phys. Rev. B, 38, 3098 (1988).
- 18. Curtiss L.A., Raghavachari K., Trucks G.W. and Pople J.A., J. Chem. Phys., 94, 7221 (1991).
- 19. a) Hehre W.J., Radom L., Schleyer P.v.R. and Popie J.A., Ab initio Molecular Theory, Wiley, New York, 1986; b) Jensen F., Introduction to Computational Chemistry, John Wiley & Sons, New York, 1999.
- 20. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G.,Montgomery J.A.Jr., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N.,Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., AdamoC,Clifford S., Ochterski J., Petersson G.A., Ayala P. Y, Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J. B., Cioslowski J., Oritz J.V., Baboul A.G., Liu G., Liashenko A., Piskorz R, Komaromi L, Gomperts R., Martin R.L., Fox D. J., Keith T., Al-Laham M.A., Peng C. Y, Nanayakkara A.,Challacombe M., Gili P.M.W., Johnson B.G., Chen W., Wong M.W., Andres J.L., Gonzalez C.J, Head-Gordon M., Replogle E.S. and Pople J.A., Gaussian 98, Gaussian, Inc., Pittsburgh PA, 1998.
- 21. Yang X., Orlova G., Zhou XJ. and Leung K.T., Chem. Phys. Lett., 380, 34 (2003), and referencescite therein.
- 22. Reva I.D., Stephanian S.G., Adamowicz L. and Fausto R., J. Phys. Chem. A, 105, 4773 (2001), and references cited therein.
- 23. Kakkar R., Pathak M. and Radhika N.M., Org. Biomol. Chem., 71, 3727 (2006).
- 24. Harata K., Sakabe N. and Tanaka J., Acta Cryst., B33, 210 (1977).
- 25. Wallace F. and Wagner E., Spectrochim. Acta, 34A, 589 (1978).
- 26. Tripath G.N.R. and Katon J.E., Spectrochim. Acta, 35A, 401 (1979).
- 27. Wolfs I. and Desseyn H.O., Spectrochim. Acta, 51A, 1601 (1995).
- 28. Hunter E.P. and Lias S.G., J. Phys. Chem. Ref. Data, 27, 413 (1998).
- 29. Graul S.T., Schnute M.E. and Squires R.R., Int. J. Mass Spectrom. Ion Proc., 96, 181 (1990) cited NIST Standard Reference Database 69, June 2005 Release: NIST Chemistry WebBook Negative I Energetics data compiled by J.E. Bartmess: http://webbook.nist.gov/chemistry/
- 30. Smith B.J. and Radom L., J. Am. Chem. Soc., 115, 4885 (1993).
- 31. Scott A.P. and Radom L., J. Phys. Chem., 100, 16502 (1996).
- 32. Hansch C., Leo A. and Taft R.W., Chem. Rev., 91, 165 (1991).
- 33. Talley J.M., Cerda B.A., Ohanessian G. and Wesdemiotis C., Chem. Eur. J., 8, 1377 (2002).
- 34. Lau J. K.-C., Wong C.H.S., Ng P.S., Siu F.M., Ma N.L. and Tsang C.W., Chem. Eur. J., 9,3383 (2003).
- 35. Fujii T., Mass Spectrom. Rev., 19, 111 (2000).
- 36. Hoyau S., Norrman K., McMahon T.B. and Ohanessian G., J. Am. Chem. Soc., 121, 8864 (1999).
- 37. Keesee R.G. and Castleman A.W., J. Phys. Chem. Ref. Data, 15, 1011 (1986).
- 38. Data for adduct formation between cations and neutrals may be found in: http://webbook.nist.gov/chimistry/reac-ser.html#Cluster and http://webbook.nist.gov/chemistry/reac-ser.html
- 39. Brewer L. and Brackett E., Chem. Rev., 61, 425 (1961).
- 40. Chen G. and Cooks R.G., J. Mass Spectrom., 32, 1258 (1997).
- 41. Wu L., Denault J.W., Cooks R.G., Drahos L. and Vekey K., J. Am. Soc. Mass Spectrom., 13, 1388 (2002).
- 42. Jarke A.R., Waldman A.D.B.,HartK.W.and HolbrookJ, J.,Biochim. Biophys. Acta, 829,1753(1985).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0014-0059