PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Properties of the Dihydrogen-Bonded Dimer (BH3NH3)2

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energetic and spectroscopic properties of the dihydrogen-bonded dimer (BH3NH3)2 with the B–H bonds as proton acceptors and the N–H bonds as proton donors were calculated by means of the second-orderMller-Plesset perturbation theory and density functional theory methods. The C2h head-to-tail structure with four equivalent dihydrogen bonds was found to be the most stable one. The symmetry-adapted perturbation theory calculations showed that (BH3NH3)2 dimer is bonded by electrostatic-induction-dispersion interactions and the interaction energy decomposition is comparable with this calculated for water dimer. The protons acting as proton donors are deshielded while the protons acting as proton acceptors are shielded upon dimer formation. The one-bond dihydrogen-bond transmitted proton-proton coupling constant has a noticeable value of 1.9 Hz. Among the three-bond dihydrogen-bond transmitted reduced coupling constants the largest one is the coupling between nitrogen and boron nuclei with a value of 5.6.10 19.T2.J -1.
Rocznik
Strony
683--697
Opis fizyczny
Bibliogr. 63 poz., rys.
Twórcy
autor
autor
Bibliografia
  • 1.RichardsonT.B.,deGalaS.,CrabtreeR.H. andSiegbahnP.E.M., J. Am. Chem. Soc., 117,12875(1995).
  • 2.Custelcean R. and Jackson J.E., Chem. Rev., 101, 1963 (2001).
  • 3.Kar T. and Scheiner S., J. Chem. Phys., 119, 1473 (2003).
  • 4.Hermansson K., J. Phys. Chem. A, 106, 4695 (2002).
  • 5.Cybulski H., Pecul M., Sadlej J. and Helgaker T., J. Chem. Phys., 119, 5094 (2003).
  • 6.Grabowski S.J., J. Mol. Struct., 553, 151 (2000).
  • 7.Grabowski S.J., J.. Phys. Chem. A, 104, 5551 (2000).
  • 8.Berski S., Lundell J. and Latajka Z., J. Mol. Struct., 552, 223 (2000).
  • 9.McDowell S.A.C. and Forde T.S., J. Mol. Struct. (Theochem), 624, 109 (2003).
  • 10.Zierkiewicz W. and Hobza P., Phys. Chem. Chem. Phys., 6, 5288 (2004).
  • 11.Wu Z.R., Ebrahimian S., Zawrotny M.E., Thornburg L.D., Perez-Alvarado G.C., Brothers P., Pollack R.M. and Summers M.F., Science, 276, 415 (1997).
  • 12.Frey P.A., Whitt S.A. and Tobin J.B., Science, 264, 1927 (1994).
  • 13.Kumar G.A. and McAllister M.A., J. Org. Chem., 63, 6968 (1998).
  • 14.Del Bene J.E., Perera S.A. and Bartlett R.J., J. Phys. Chem. A, 103, 8121 (1999).
  • 15.Cordier F. and Grzesiek S., J. Am. Chem. Soc., 121, 1601 (1999).
  • 16.Cornilescu G., Hu J.-S. and Bax A., J. Am. Chem. Soc., 121, 2949 (1999).
  • 17.Dingley A.J. and Grzesiek S., J. Am. Chem. Soc., 120, 8293 (1998).
  • 18.Juranič N., Ilich P.K. and Macura S., J. Am. Chem. Soc., 117, 405 (1995).
  • 19.Blake R. R.,Park J. B., Adams M.W.W. and Summers M.F., J. Am. Chem. Soc., 114,4931 (1992).
  • 20.ComilescuG.,RamirezB.E.,FrankM.K.,CloreG.M.,GronenbomA.M.and Bax A.,J.Am. Chem. Soc., 121, 6275 (1999).
  • 21.Dingley A.J., Masse J.E., Peterson R.D., Barfield M., Feigon J. and Grzesiek S., J. Am. Chem. Soc., 121, 6019(1999).
  • 22.Shenderovich I.G., Smimov S.H., Denisoy G.S., Gindin V.A., Golubev N.S., Dunger A., Reibke R.,Kirpekar S., Malkina O.L. and Limbach H.-H., Ber. Bunsenges. Phys. Chem., 102, 422 (1998).
  • 23.Golubey N.S., Shenderovich I.G. Smirnov S.N., Denisoy G.S. and Limbach H.-H., Chem. Eur. J., 5,492 (1999).
  • 24.Pemishin K., Ono A., Femandez C., Szyperski T., Kainosho M. and Wuthrich K., Proc. Natl. Acad. Sci. USA, 95,14147(1998).
  • 25.Henning M. and Geierstanger B.H., J. Am. Chem. Soc., 121, 5123 (1999).
  • 26.Cordier F., Rogowski M., Grzesiek S. and Bax A., J. Magn. Reson., 140, 510 (1999).
  • 27.Meissner A. and Sorensen O.W., J. Magn. Reson., 143, 387 (2000).
  • 28.Liu A.Z., Majumdar A., Hu W.D., Kettani A., Skripkin E. and Patel D.J., J. Am. Chem. Soc., 122, 3206 (2000).
  • 29.Arnold W.D. and Oldfield E., J. Am. Chem. Soc., 122, 12835 (2000).
  • 30.Borman S., Chemical & Engineering News, 77, 36 (1999).
  • 31.Pecul M., J. Chem. Phys., 113, 10835 (2000).
  • 32.Del Bene J.E., J. Phys. Chem. A, 108, 6820 (2004).
  • 33.Cybulski H., Tymińska E. and Sadlej J., Chem Phys Chem., 7, 629 (2006).
  • 34.Cramer C.J. and Gladfelter W.L., Inorg. Chem., 36, 5358 (1997).
  • 35.Popelier P.L.A., J. Phys. Chem. A, 102, 1873 (1998).
  • 36.Li J., Zhao F. and Jing F., J. Chem. Phys., 116, 25 (2002).
  • 37.Merino G., Bakhmutoy V.I. and Vela A., J. Phys. Chem. A, 106, 8491 (2002).
  • 38.Meng Y., Zhou Z., Duan C., Wang B. and Zhong Q., J. Mol. Struct. (Theochem), 713, 135 (2005).
  • 39.Jeziorska M., Jeziorski B. and Cizek J., Int. J. Quantum Chem., 32, 149 (1987).
  • 40.Jeziorski B., Moszyńskf R., Ratkiewicz A., Rybak S., Szalewicz K. and Williams H.L., Methods and Techniques in Computational Chemistry: METECC-94, ed. E. Clementi, STEF, Cagliari, 1993.
  • 41.Jeziorski B., Moszyński R. and Szalewicz K., Chem. Rev., 94, 1887 (1994).
  • 42.Bukowski R., Cenek W, Jankowski R, Jeziorski B., Jeziorska M., Kucharski S.A., Misquitta A.J.,Moszyński R., Patkowski K., Rybak S., Szalewicz K., Williams H.L. and Wormer P.E.S., SAPT2002: an ab initio program for many-body symmetry-adapted perturbation theory calculations ofintermolecular interaction energies. Seąuential and parallel versions, 2003, Uniyersity of Delaware and University of Warsaw.
  • 43.Dunning T.H., J. Chem. Phys., 90, 1007 (1989).
  • 44.Kendall R.A., Dunning T.H. and Harrison R.J., J. Chem. Phys., 96, 6796 (1992).
  • 45.Xantheas S.S., J. Chem. Phys., 100, 7523 (1994).
  • 46.Xantheas S.S. and Dang L.X., J. Phys. Chem., 100, 3989 (1996).
  • 47.Boys S.F. and Bernardi F., Mol. Phys., 19, 553 (1970).
  • 48.Breneman C.M. and Wiberg K.B., J. Comput. Chem., 11, 361 (1990).
  • 49.Frisch M.J., Trucks G.W, Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J. A., Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyey O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y, Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K.,Rabuck A.D., Raghayachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanoy B.B., Liu G., Liashenko A., Piskorz P, Komaromi L, Martin R.L., Fox D.J., Keith T.,Al-Laham M.A., Peng C.Y, Nanayakkara A., Challacombe M., Gili P.M.W., Johnson B., Chen W, Wong M.W., Gonzalez C. and Pople J.A., Gaussian 03, 2004, Revision C.02.
  • 50.London F.J., J. Phys. Radium, 8, 397 (1937).
  • 51.Hameka H.F., Rev. Mod. Phys., 34, 87 (1962).
  • 52.Wolinski K., Hinton J.F. and Pulay R, J. Am. Chem. Soc., 112, 8251 (1990).
  • 53.Huzmaga,S.,Approximate Atomic Functions. Technical Report, University of Alberta,Edmonton, 1971.
  • 54.van Wiillen C., PhD thesis, Ruhr-Universitat Bochum, 1992.
  • 55.Helgaker T., Jaszuński M., Ruud K. and Górska A., Theor. Chem. Acc., 99, 175 (1998).
  • 56.Becke A.D., J. Chem. Phys., 98, 5648 (1993).
  • 57.Lee C., Yang W. and Parr R.G., Phys. Rev. B, 37, 785 (1988).
  • 58.DALTON,a molecular electronic structure program, release 2.0 (2005),see http://www.kjemi.uio.no/software/dalton/dalton.html.
  • 59.Helgaker T., Jaszuński M. and Ruud K., Chem. Rev., 99, 293 (1999).
  • 60.Lutnaes O.B., Ruden T.A. and Helgaker T., Magn. Reson. Chem., 42, S 117 (2004).
  • 61.Cybulski H., Pecul M. and Sadlej J., Chem. Phys., 326,431 (2006).
  • 62.Thome L.R., Suenram R.D. and Lovas F.J., J. Chem. Phys., 78, 167 (1983).
  • 63.Klooster W.T., Koetzle T.F., Siegbahn P.E.M., Richardson T.B. and Crabtree R.H., J. Am. Chem. Soc., 121,6337(1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0014-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.