Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
DFT calculations for two hypothetical ternary nitrides of hexavalent tungsten: LaWN3 and La2WN4 (in perovskite and K2NiF4 structures, respectively) show that these compounds should spontaneously form fromWN2 (acid) and LaN (base) reagents, or simply from (WN + 1/2 N2 orW+ N2) and LaN, at ambient or elevated temperature and high N2 pressure to speed up the reactions. This concept may be utilized to stabilize other efemeric nitrides, like these of ReVII, OsVIII, and possibly even of unprecedented IrIX. La2WN4 is example of rare two-dimensional nitride materials. Band structure calculations confirm that LaWN3, La2WN4 and several related compounds should exhibitmetallic conductivity, and they show good prospect for 2Dsuperconductivity via self-doping.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
613--620
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Department of Chemistry, Warsaw University, Pasteur 1, 02-093 Warsaw, Poland
Bibliografia
- 1. Pierson H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, and Applications, Noves Publications, Westwood 1996.
- 2. Yamanaka S., Hotehama K. and Kawaji H., Nature, 392, 580 (1998).
- 3. See for example recent review: Krukowski S., Skierbiszewski C., Perlin P., Leszczyński M., Boćkowski M. and Porowski S., Acta Phys. Polon. B, 37, 1265 (2006), and references therein.
- 4. Landskron K., Huppertz H., Senker J. and Schnick W., Angew. Chem. Int. Ed. Engl., 40,2443 (2001).
- 5. Kroll P., Schröter T. and Peters M., Angew. Chem. Int. Ed. Engl., 44, 4249 (2005).
- 6. Gregoryanz E., Sanloup C., Somayazulu M., Badro J., Fiquet G., Mao H.K. and Hemley R.J., Nature Mater, 3, 294 (2004). In this work, the product of DAC synthesis has been erroneously described as PtmN.
- 7. von Appen J., Lumey M.W. and Dronskowski R., Angew. Chem. Int. Ed. Engl., 45, 4365 (2006).
- 8. Kobayashi K., Nakajima H., Goto T. and Ito Y., J. Phys. Chem. B, 109, 23972 (2005).
- 9. Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J. and Payne M.C., J. Phys.:Cond. Matt., 14, 2717 (2002).
- 10. www.webelements.com.
- 11. If, say, La2WN4, tums out to crystallize in other structure type with, say, 4-coordinated W (for example, in the K2CrO4-type structure), its formation would be even easier than for the phases described in this work (the enthalpies of the formation reactions would be even more negative). In such instance, the K2NiF4 type might possibly be achieved at high pressures.
- 12. In our calculations, similarly as in Ref. 5, baddeleyite type (WN2-I) is preferred over WN2-II (cotunnite) by+1.20eV.
- 13. LaN has been predicted to transform to the CsCl structure type only at 27 GPa: Vaitheeswaran G., Kanchana V. and Rajagopalan M., Solid State Commun., 124, 97 (2002).
- 14. Increased external pressure should make synthesis even more feasible (thermodynamically at least, via the pV term), because LaWN3 and La2WN4 have unit celi volumes smaller than those of starting binary reagents by 4.2% and l .9%, respectively.
- 15. (a) Grochala W. and Edwards P.P., Chem. Rev., 104, 1283 (2004); (b) Jaroń T., Grochala W. and Hoffmann R., J. Mol. Model., in press.
- 16. In the isoelectronic series, La111, HfIV, Tav, WVI, Rev", OsvIII, the oxidizing power obviously increases. Therefore, LaN, Hf3N4 and Ta3N5 are known, WN2 is on the verge of stability at ambient temperature and pressure, while Re3N7 and Os3N8 have not been synthesized so far.
- 17. As improbable as it may seem at the first sight, one may also address the issue of stability of IrlxN3,a nitride of unprecedented nonavalent iridium, and of its quaternary salts, e.g. (KBa)IrN4 etc. In ESI we list the predicted unit cell vector of cubic IrIXN3 (in the RuO3 structure). Considerations of kinetic stability of this fascinating phase require demanding phonon calculations for a large supercell, with particular attention to the presumed N-N pairing. Studies of unbelievable IrIX, Ptx and Auxl molecular and extended species are nów conducted in our laboratory.
- 18. Wimmer E., Mater. Sci. - Poland, 23, 325 (2005).
- 19. Bednorz J.G. and Miiller A.K., Z. Phys. B, 64, 189 (1986).
- 20 (a) McLain S.E., Dolgos M.R., Tennant D.A., Turner J.F.C., Barnes T., Proffen T., Sales B.C. and Bewley R.I., Nature Mater., 5, 561 (2006); (b) Grochala W., Nature Mater., 5, 513 (2006).
- 21. Grochala W., J. Mol. Model, 11, 323 (2005).
- 22. Burdett J. K., Inorg. Chem., 32, 3915 (1993).
- 23. See: Simon A., Angew. Chem. Int. Ed. Engl., 36, 1789 (1997), and recent works by the same author.
- 24. Grochala W., Coll Czech. Chem. Commun., 71, 1525 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0014-0027