PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametrization of 2-thiouracil and 4-thiouracil in CHARMM all-atom empirical force field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new set of force field parameters complementing the CHARMM27 all atom empirical force field for nucleic acids was developed for 2-thiouracil and 4-thiouracil, two naturally modified RNA bases. The new parameters allow for molecular modeling and molecular dynamics simulations of RNA containing 2-thiouracil and 4-thiouracil.
Twórcy
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences Noskowskiego 12/14, 61-704 Poznań, Poland
autor
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences Noskowskiego 12/14, 61-704 Poznań, Poland
Bibliografia
  • [1] A. R. Leach, Empirical Force Field model: Molecular Mechanics (In:) Molecular Molelling: Principles and Applications. Prentice Hall, 165-245, 2001.
  • [2] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics calculations., J. Comp. Chem. 4, 187-217 (1983).
  • [3] D. A. MacKerell Jr., B. Brooks, C. L. Brooks II, L. Nilsson, B. Roux and M. Karplus. CHARMM: The Energy Function and Its Parameterization with an Overview of the Program. [In:] P. V. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III and P. R. E. Schreiner, (ed.) Encyclopedia of Computational Chemistry. John Wiley & Sons, Chichester, UK, 271-277, 1998.
  • [4] D. A. Case, D. A. Pearlman, J. W. Caldwell, T. E. Cheatham III, J. Wang, W. S. Ross, C. L. Simmerling, T. A. Darden, K. M. Merz, R. V. Stanton, A. L. Cheng, J. J. Vincent, M. Crowley, V. Tsui, H. Gohlke, R. J. Radmer, Y. Duan, J. Pitera, I. Massova, G. L. Seibel, U. C. Singh, P. K. Weiner and P. A. Kollman, AMBER 7, University of California, San Francisco (2002).
  • [5] N. Foloppe and A. D. MacKerell, All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data, J. Comp. Chem. 21, 86 (2000).
  • [6] A. D. MacKerell, N. Banavali and N. Foloppe, Development and current status of the CHARMM force field for nucleic acids, Biopolymers 56, 257-265 (2000).
  • [7] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117, 5179 (1995).
  • [8] T. E. Cheatham, P. Cieplak, and P. A. Kollman, A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat, J. Biomol. Struct. Dyn. 16, 845-862 (1999).
  • [9] T. E. Cheatham and M. A. Young, Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise, Biopolymers 56, 232-256 (2000).
  • [10] W. Wang, O. Donini, C. M. Reyes and P. A. Kollman, Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein- protein, and protein-nucleic acid noncovalent interactions, Annu. Rev. Biophys. Biomol. 30, 211-243 (2001).
  • [11] J. Norberg and L. Nilsson, Molecular dynamics applied to nucleic acids, Acc. Chem. Res. 35, 465-472 (2002).
  • [12] M. Orozco, A. Perez, A. Noy and F. J. Luque, Theoretical methods for the simulation of nucleic acids, Chem. Soc. Rev. 32, 350-364 (2003).
  • [13] T. E. Cheatham, Simulation and modeling of nucleic acid structure, dynamics and interactions, Curr. Opin. Struct. Biol. 14, 360-367 (2004).
  • [14] J. M. Wang, P. Cieplak and P. A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comp. Chem. 21, 1049-1074 (2000).
  • [15] P. F. Agris, The importance of being modified: Roles of modified nucleosides and Mg2+ in RNA structure and function, Progress in Nucleic Acid Research and Molecular Biology, 53, 79-129 (1996).
  • [16] S. S. Ashraf, E. Sochacka, R. Cain, R. Guenther, A. Malkiewicz and P. F. Agris, Single atom modification (O -> S) of tRNA confers ribosome binding, RNA 5, 188-194 (1999).
  • [17] F. V. Murphy, V. Ramakrishnan, A. Malkiewicz and P. F. Agris, The role of modifications in codon discrimination by tRNA(Lys) UUU, Nature Structural & Molecular Biology 11, 1186-1191 (2004).
  • [18] J. Sponer, J. Leszczynski and P. Hobza, Thioguanine and thiouracil: Hydrogen-bonding and stacking properties, J. Phys. Chem. A 101, 9489-9495 (1997).
  • [19] M. A. Palafox, V. K. Rastogi, R. P. Tanwar and L. Mittal, Vibrational frequencies and structure of 2-thiouracil by Hartree-Fock, post-Hartree-Fock and density functional methods, Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy 59, 2473-2486 (2003).
  • [20] L. A. Eriksson, E. S. Kryachko and M. T. Nguyen, Theoretical study of hydrogenation of thiouracils and their base pairs with adenine, International Journal of Quantum Chemistry 99, 841-853 (2004).
  • [21] J. Sponer, P. Jurecka and P. Hobza, Accurate interactionenergies of hydrogen-bonded nucleic acid base pairs, J. Am Chem. Soc. 126, 10142-10151 (2004).
  • [22] A. D. MacKerell, Atomistic Models and Force Fields. [In:] O. M. Becker, A. D. MacKerell, B. Roux and M. Watanabe (ed.) Computational Biochemistry and Biophysics. Marcel Dekker, Inc., New York, Basel. pp. 7-38, 2001.
  • [23] A. D. MacKerell, http://www.pharmacy.umaryland.edu/faculty /amackere/param/force_field_dev.htm
  • [24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, T. Vreven, K. N. Kudin, C. J. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. Dannenberg, V. G. Zakrzewski, .Dapprich, A. D. Daniels,M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision C.02, Inc., Wallingford CT (2004).
  • [25] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79, 926-935 (1983).
  • [26] E. R. T. Tiekink, Crystal structure of 2-thoiuracil, Zeitschrift Kristall, 187, 79-84 (1989).
  • [27] S. W. Hawkinson, 1-Methyl-4-thiouracil, Acta Crystallogr B31, 2153-2155 (1975).
  • [28] P. Hobza, M. Kabelac, J. Sponer, P. Mejzlik and J. Vondrasek, Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3) and ab initio Hartree-Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree-Fock results, J. Comp. Chem. 18, 1136-1150 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0014-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.