PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of possibilities and perspectives of application of nanomaterial hard coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ocena możliwości perspektywicznych zastosowań twardych nano-powłok
Języki publikacji
EN
Abstrakty
PL
Artykuł jest przeglądem badań nad zastosowaniem i metodami badań twardych nanopowłok. Metody otrzymywania tych materiałów oraz przykłady ich zastosowań są omówione w pierwszej części pracy. Dalsza część pracy dotyczy jej głównego celu, jakim jest numeryczne modelowanie odkształcania twardych nano powłok. Rozważono różne podejścia do tego problemu i omówiono podstawowe trudności pojawiające się w symulacji. Omówiono trzy podstawowe testy stosowane do identyfikacji własności analizowanych powłok. W końcowej części pracy opisano wykonane przez Autorów symulacje numeryczne i przedstawiono przykładowe wyniki dla testu wciskania wgłębnika w wielowarstwowy nanomateriał gradientowy. Analiza wyników potwierdza zdolność modelu MES do symulacji analizowanego procesu. Model ten zostanie wykorzystany w dalszych badaniach jako model zadania bezpośredniego w rozwiązaniu odwrotnym dla omawianych testów doświadczalnych.
Wydawca
Rocznik
Strony
42--63
Opis fizyczny
Bibliogr. 133 poz., rys.
Twórcy
autor
autor
  • Department of Modelling and Information Technology, Faculty of Metals Engineering and Industrial Computer Science, AGH - University of Science and Technology, Kraków, Poland
Bibliografia
  • Argyris, J., Doltsinis, I.S., Eggers, M., Handel, R., 1994, Computer Meth Appl Mech Eng., 111, 203.
  • Attaf, M.T., 2004a, Connection between the loading curve models in elastoplastic indentation, Materials Letters, 58, 3491-3498.
  • Attaf, M.T., 2004b, Tip bluntness determination using the energy principle and consequent correction to the indentation function, Materials Letters, 58, 1100- 1106.
  • Bansal, Y. , Pindera, M.-J., 2003, Efficient formulation of the thermoelastic higher-order theory for functionally graded materials, J. Thermal Stresses, 26, 1055-1092.
  • Bao, Y.W., Wang, W., Zhou, Y.C., 2004, Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements, Acta Materialia, 52, 5397-5404.
  • Basu, S.K., Scriven, L.E., Francis, L.F., McCormick, A.V., 2005, Mechanism of wrinkle formation in curing coatings, Progress in Organic Coatings, 53, 1-16.
  • Bathe, K. J., 2004, Adina Theory and Modeling Guide, Report ARD04-7, 1.
  • Bathe, K.J., Montans, F.J., 2004, On modeling mixed hardening in computational plasticity, Computers and Structures, 82, 6, 535-539.
  • Beake, B.D., Lau, S.P., Smith, J.F., 2004, Evaluating the fracture properties and fatigue wear of tetrahedral amorphous carbon films on silicon by nano-impact testing, Surface and Technology, 177-178,611-615.
  • Beake, B.D., Smith, J.F., 2004, Nano-impact testing - an effective tool for assessing the resistance of advanced wear-resistance coatings to fatigue failure and delamination, Surface and Coatings Technology, 188-189, 594-598.
  • Beake, B.D., Lau, S.P., 2005, Nanotribological and nanomechanical properties of 5-80nm tetrahedral amorphous carbon films on silicon, Diamond and Related Materials, 14, 1535-1542.
  • Buli, S.J., Berasetegui, E.G., Page, T.F., 2004, Modeling of the indentation response of coatings and surface treatments, Wear, 256, 857-866.
  • Butcher, R.J., Rousseau, C.E., Tipper, H.V., 1999, A functionally graded particulate composite: preparation, measurement and failure analysis, Acta Materialia, 47, 259-268.
  • Cai, X., Bangert, H., 1996, Finite-element analysis of the interface influence on hardness measurements films, Surface and Coatings, 81,240-255.
  • Carneiro, C.A.Y., Rochinha, F.A., Borges, L.S.A., 2004, Thermoelastic analysis of functionally graded materials submitted to shocks, Proc. 21st ICTAM, SM10 Functionally Graded Materials, 1-2.
  • Cheng, Z.-Q., Batra, R.C., 2000, Three-dimensional thermoelastic deformations of a functionally graded elliptic plate, Composites: Part B, 31, 97-106.
  • Czarnowska, E., Wierzchoń, T., Maranda-Niedbała, A., 1999, Properties of the surface layers on titanium alloy and their biocompatibility in vitro tests, J. Mat. Proc. Techn., 92-93, 190-194.
  • Dao, M., Gu, P., Maewal, A., Asaro, R.J., 1997, A micromechanical study of residual stresses in functionally graded materials, Acta Materialia, 45, 3265-3276.
  • Dao, M., Chollacoop, N., van Vliet, K.J., Venkatesh, T.A., Suresh, S., 2001, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Materialia, 49, 3899-3918.
  • Delale, F., Erdogan, F., 1983, The crack problem for nonhomogeneous plane, J. Appl. Mech., 50, 609-614.
  • Dobrzański, L.A., 2002, Podstawy nauki o materiałach i metaloznawstwo, Podręcznik akademicki, Gliwice-Warszawa (in Polish).
  • Doerner, M. F., Nix, W. D., 1986, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res., 1/4,601-609.
  • Drysdale, W.H., Zak, A.R., 1985, Structural Theories - A Theory for Rate Dependent Plasticity, Computers and Structures, 20, 259-264.
  • Eischen, J.W., 1987, Fracture of nonhomogeneous materials, Int. J. of Fracture, 34, 3-22.
  • Erdogan, F., 1995, Fracture mechanics of functionally graded materials, Composite Eng., 5, 753-770.
  • Erdogan, F., Wu, B.H., 1997, The surface crack problem for plate with functionally graded properties, J. Appl. Mech., 64, 449-456.
  • Fang, T.H., Jian, S.-R., Chuu, D.-S., 2004, Nanomechanical properties of TiC, TiN and TiCN thinfilms using scanning probe microscopy and nanoidentation, Appl. Surface Science, 228, 365-372.
  • De Fazio, L., Syngellakis, S., Wood, R.J.K., Fugiuele, F.M., Sciume, G., 2001, Nanoindentation of CVD diamond: comparison of an FE model with analytical and experimental data, Diamond and Related Materials, 10, 765-769.
  • Fischer-Cripps, A.J., 2002, Nanoindentation, Springer-Verlag, ISBN 0-387-95394-9.
  • The FORGE® V.2.4 materials database, 2004, Tranvalor SA of Sophia-Antipolis, France.
  • The FORGE® V.3.6 materials database, 2005, Tranvalor SA of Sophia-Antipolis, France.
  • http://www.matweb.com.
  • Franco, A.R., Pintaude, G., Sinatora, A., Pinedo, C.E., Tschiptschin, A.P., 2004, The Use of a Vickers Indenter in Depth Sensing Indentation for Measuring Elastic Modulus and Vickers Hardness, Materials Research, 7, 483-491.
  • Gdoutos, E.E., Daniel, I.M., Wang, K.-A., 2003, Compression facing wrinkling of composite sandwich structures, Mechanics of Materials, 35, 511-522.
  • Gere, J.M., Timoshenko, S.P., 1984, Mechanics of Materials, PWS-KENT Publishing Company, Boston.
  • Ghista, D.N., Reul, H., 1983, Prosthetic aortic leaflet valve design: performance analysis of an Avcothane® leaflet valve, Adv. Cardiovasc. Phys., 5 (IV), 31-42.
  • Gong, J., Miao, H., Peng, Z., 2004, On the contact area for nanoindentation tests with Berkovich indenter: case study on soda-lime glass, Materials Letters, 58, 1349-1353.
  • Gu, Y.Y., Lin, J.F., 1996a, The tribological characteristics of titanium nitride coatings, Wear, 194, 22-29.
  • Gu, Y.Y., Lin, J.F., 1996b, Comparsion of the tribological characteristics of titanium nitride and titanium carbonitride coating films, Surface and Coating Techn., 85, 146-155.
  • Gu, Y.Y., Lin, J.F., Ai, C.-F., 1996, The tribological characterisctics of titanium nitride coatings, Wear, 194, 12-21.
  • Gu, P., Asaro, R.J., 1997, Cracks in functionally graded materials, Int. J. Solids and Structures, 34, 1-7.
  • Gu, P., Dao, M., 1999, A simplified method of calculating the crack tip field of functionally graded materials using domain integral, J. Appl. Mech., 66, 101-108.
  • Hansel, A., Spittel, T., 1978, Krafts und Arbeitsbedarf Bildsamer Formgebungverfahren VEB Deutscher Verlay fur Grundstoff Industrie, Leipzig.
  • Hirano, T., Yamada, T., Teraki, J., Mino, M., Kumakawa, A., 1988, A Study on a functionally gradient material design system for a thrust chamber, Proc. 16th Int. Symp. on Space Technology and Science, Tokyo, 375-380.
  • Ho, S.P., Balooch, M., Marshall, S. J., Marshall, G.W., 2004, Local properties of a functionally graded interphase between cementum and dentin, Wiley InterScience l, www.interscience.wiley.com
  • Holmberg, K., Matthews, A., 1994, Coatings tribology properties, techniques and applications in surface engineering, Elsevier Tribology Series 28, Elsevier Science B.V., The Netherlands, 442.
  • Holmberg, K., Matthews, A., Ronkainen, H., 1998, Coatings tribology-contact mechanisms and surface design, Tribology Int., 31, 107-120.
  • Holmberg, K., 2000, The basic material parameters that control friction and wear of coated surfaces under sliding, Tribologia-Finnish, J. of Tribology, 19, 3-18.
  • Holmberg, K., Ronkainen, H., Matthews, A., 2000, Review Tribology of thin coatings, Ceramics Int., 26, 787-795.
  • Holmberg, K., Laukkanen, A., Ronkainen, H., Wallin, K., Varjus, S., 2003, A model for stresses, crack generation and fracture toughness calculation in scratched TiN coated steel surfaces, Wear, 254, 278-291.
  • http: //cardiotech-inc. com/products/chronothanep. asp
  • http://www.ptli.com:
  • http://www.ptli.com/testlopedia/tests/DurometerShore-d2240.asp
  • http://www.ptli.com/testlopedia/tests/tensile-rubber-D412.asp
  • http://www.ides.corn/plasticsweb/property_help/ASTMD624.htrn
  • http://www.ides.com/plasticsweb/property_help/ASTMD 1525.htm
  • http://www.ptli.com/testlopedia/tests/Flex-D790.asp
  • Inagaki, M., Yokogawa, Y., Kameyama, T., 2003, Formation of highly oriented hydroxyapatite in hydroxyapatite/titanium composite coating by radio-frequency thermal plasma spraying, Journal of Materials Science: Materials in Medicine, 14,919-922.
  • Iost, A., Bigot, R., 1996, Indentation size effect: Reality or artefact?, J. Mat. Sci., 31, 3573-3577.
  • ISO/FDIS 14577-1:2002; Metallic materials - Instrumented indentation test for hardness and materials parameters, ISO Central Secretariat, Rue de Varembe l, 1211 Geneva.
  • Jin, Z.H., Batra, R.C., 1996, Some basic fracture mechanics concepts in functionally gradient materials, J. Mech. Physics Solids, 44, 1221-1235.
  • Kawasaki, A., Watanabe, R., 1997, Concept and P/M fabrication of functionally gradient materials, Ceramics Int., 23, 73-83.
  • Kesler, O., Matejicek, J., Sampach, S., Suresh, S., Gnaeupel-Herold, T., Brandt, P.C., Prask, H.J., 1998, Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coating, Mat. Sci. Eng., A257, 215-224.
  • Kieback, B., Neubrand, A., Riedel, H., 2003, Processing techniques for functionally graded materials, Mat. Sci. Eng., A362, 81-105.
  • Kirchoff, G., Göbel, T., Bahr, H.A., Balke, H., Wetzig, K., Bartsch, K., 2004, Damage analysis of thermally cycled (Ti,Al)N coatings-estimation of strength and interface fracture toughness, Surface Coat. Techn., 179, 39-46.
  • Kobel’skij, S.B., Kuriat, R.I., Kravchenko, B.I., Kvitka, A.L., 1999, Procedure and analysis of three dimensional thermal stressed states of turbine blades with coatings subjected to thermal cycling, Strength of Materials, 31/6, 564-570.
  • Kohr, K.A., Gu, Y.W., 2000, Effect of residual stress perfomance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coating, Mat. Sci. Tech., A277, 64-76.
  • Kopernik, M., Pietrzyk, M., 2006, Możliwości modelowania nanomateriałów gradientowych, Proc. 13th Conf. Kom-PlasTech, ed., Szeliga, D., Pietrzyk, M., Kusiak, J., Szczawnica, 291-296 (in Polish).
  • Kravchuk, L.Y., Buisikikh, K.P., Semenov, G.R., Borisov, Yu.S., Zadvornyi, A., 1999, Investigation of the thermal cyclic life of coatings for combustion chambers of gas turbines, Strength of Materials, 31/1,43-48.
  • Kravchuk, L.Y., Semenov, G.R., Borovkov, Y.A., 994, Influence of heat-resistant coatings on the state of thermal stress of model of gas turbine engine blades in nonsteady heat exchange, Strength of Materials, 26/6,418-423.
  • Kustosz, R., Major, R., Wierzchoń, T., Major, B., 2004, Designing a new heart, Academia, 3/3, 14-17.
  • Lackner, J.M., Waldhauser, W., Lenz, W., Ebner, R, Major, B., Schöberl, T., 2002, Deposition of TiN thin films on three dimensional shaped tools by pulsed laser deposition, Oral Presentation at Materials Week 2002, Munich (ICM), 378.
  • Lackner, J.M., Waldhauser, W., Berghauser, R., Ebner, R., Major, B., Schöberl, T., 2004a, Structural, mechanical and tribological investigations of pulsed laser deposited titanium nitride coatings, Thin SolidFilms, 453 -454, 195-202.
  • Lackner, J.M., Waldhauser, Ebner, R., Keckes, J., Schöberl, T., 2004b, Room temperature deposition of (Ti,Al)N and (Ti,Al)(C,N) coatings pulsed laser deposition for tribological applications, Surface Coatings Techn., 177-178, 447-452.
  • Lackner, J.M., Waldhauser, W., Ebner, R., Major, B., Schöberl, 2004c, Structural, mechanical and tribological investigations of pulsed laser deposited titanium nitride coatings, Surface and Coatings Techn., 180-181, 585.
  • Lackner, J.M., 2005a, Industrially-scaled hybrid Pulsed Laser Deposition at room temperature, Orekop, Kraków.
  • Lackner, J.M., 2005b, Influences of the nitrogen content on the morphological, chemical and optical properties of pulsed laser deposited silicon nitride thin films, Surface and Coatings Technology, 192, 225-230.
  • Lackner, J.M., 2005c, Industrially-styled room-temperature pulsed laser deposition of titanium-based coatings, Vacuum, 78, 73-82.
  • Landau, L.D., Lifshitz, E.M., 1986, Theory of Elasticity, Pergamon Press, Oxford.
  • Lee, W.Y., Stinton, D.P., Berndt, Ch.C., Erdogan, F., Lee, Y.D., Mutasim, Z., 1996, Concept of functionally graded materials for advanced thermal barrier coating appliacations, J. Amer. Cer. Soc., 79, 3003-3012.
  • Li, J., Luo, X.Y., Kuang, Z.B., 2001, A nonlinear model for porcine aortic heart valves, J. Biomechanics, 34, 1279-1289.
  • Lichinchi, M., Lenardi, C., Haupt, J., Yitali, R., 1998, Simulation of Berkovich nanoindenattion experiments on thin films using finite element method, Thin Solids Films, 333, 278-286.
  • Ma, D., Xu, K., He, J., 1998, Numerical simulation for determining the mechanical properties of thin metal films using depth-sensing indentation technique, Thin Solid Films, 323,183-187.
  • Markworth, A.J., Ramesh, K.S., Parks, W.P., 1995, Review Modeling studies applied to functionally graded materials, J. Mater. Sci., 30, 2183-2193.
  • Major, B., Ebner, R., 1999, Laser applications in surface modification and pulsed laser deposition, J. Technical Physics, Special Supplement XL. 3, 161, Warszawa.
  • Major, B., 2002, Ablacja i osadzanie laserem impulsowym, Wydawnictwo Naukowe Akapit, Kraków (monograph in Polish).
  • Major, B., Bonarski, J.T., Waldhauser, W., Lackner, J. K., Ebner, R., 2004a, Contribution pulsed laser deposition conditions to texture, morphology and residual stresses developed in TiN thin layers, Arch. Metall. Mater., 49, 83.
  • Major, B., Mroz, W., Wierzchoń, T., Waldhauser, W., Lackner, J. K., Ebner, R., 2004b, Pulsed laser deposition of advanced titanium nitride thin layers, Surface Coatings Techn. 180-181,580-584.
  • Major, B., 2005, Laser technology in generating microstructure of FGM, Arch. Metall. Mater., 50, 35-46.
  • Major, R., Kustosz, R., Major, B., 2003, Biozgodne cienkie warstwy wytwarzane na tytanie metalicznym i poliuretanie metodą osadzania laserem impulsowym, Inżynieria Biomateriałów, 30-33, 103-104 (in Polish).
  • Major, R., Łącki, P., 2005, Finite-element modeling of thin films deposited on the polyurethane substrate, Arch. Metall. Mater., 50, 379-385.
  • Martinez, E., Romero, J., Lousa, A., Esteve, J., 2003, Nanoindentation stress-strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings, Appl Phys., Ali, 419 426.
  • Mata, M., Alcala, J., 2004, The role of friction on sharp indentation, J. Mech. Physics of Solids, 52, 145-165.
  • Matthews, A., Leyland, A., Holmberg, K., Ronkainen, H., 1998, Design aspects for advanced tribological surface coatings, Surface Coatings Techn., 100-101, 1-6.
  • McHugh, P.E., Asaro, R.J., Shih, C.F., 1993, Computational modeling of metal matrix composite materials-I, Isothermal deformation patterns in ideal microstructures, Acta Metallurgica, 41,1461-1476.
  • Mohammadi, S., Forouzan-Sepehr, S., Asadollahi, A., 2002, Contact based delamination and fracture analysis of composites, Thin-Walled Structures, 40, 595-609.
  • Morawiecki, M., Sadok, L., Wosiek, E., 1977, Teoretyczne podstawy technologicznych procesów przeróbki plastycznej, Śląsk, Katowice.
  • Nałęcz, M., 2001, Sztuczne narządy, Exit, Warszawa (in Polish).
  • Ning, Y., Polycarpou, A., Corny, T.F., 2004, Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation, Thin Solid Films, 450, 295-303.
  • Ochelski, S., 2004, Metody doświadczalne mechaniki kompozytów konstrukcyjnych, WN-T, Warszawa (in Polish).
  • Oliver, C., Pharr, G.M., 1992, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation rxperiment, J. Mater. Res., 7, 1564-1583.
  • Oleś, A., 1998, Metody doświadczalne fizyki ciała stałego, WN-T, Warszawa (in Polish).
  • Overview of Mechanical Testing Standards, 2002, Applications bulletin, CSM instruments, Adv. Mech. Surface Testing, 18.
  • http://www.csminstruments.com/frames/bullet/appl 8/appbull 18. pdf
  • Panich, N., Sun, Y., 2004, Effect of penetration depth on indentation response of soft coatings on hard substrates: a finite element analysis, Surface Coatings Techn., 182, 342-350.
  • Panich, N., Sun, Y., 2006, Mechanical characterization of nanostructured TiB2 coatings using microscratch techniques, TribologyInt.,39/2, 138-145.
  • Parameswaran, V., Shukla, A., 1998, Dynamic fracture of a functionally gradient material having discrete property variation, J. Mater. Sci., 33, 3303-3311.
  • Paszyński, M., Kurtz, J. Demkowicz, L., 2006, Parallel fully automatic hp - adaptative 2D finite element package, Comp. Meth. Appl. Mech. Eng., 195, 711-741.
  • Paszyński, M., Demkowicz, L., 2006, Parallel fully automatic hp - adaptative 3D finite element package, paper accepted to the special issue of Engineering with Computers.
  • Paszyński, M., Kopernik, M., Madej Ł., Pietrzyk, M., 2006, Automatic hp adaptivity to improve accuracy of modeling of heat transport and linear elasticity problems, J. Machine Eng., 6, 73-82.
  • Pierce, D., Asaro, R.J., Needleman, A., 1983, Material rate dependence and localized deformation in crystalline solids, Acta Metallurgica, 31, 1951.
  • Pollini, I. Mosser, A., Parlebas, J.C., 2001, Electronic, spectroscopic and elastic properties of early transition metal compounds, Physics Reports, 355, 1-72.
  • Pompę, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D., Schulte, K., 2003, Functionally graded materials for biomedical applications, Mat. Sci. Eng., A362, 40-60.
  • Prchlik, L., Pisacka, J., Sampath, S., 2003, Deformation and strain distribution in plasma sprayed nickel - aluminium coating loaded by spherical indenter, Mat. Sci. Eng., A 360, 264-274.
  • Przygocki, W., Włochowicz, A., 2001, Fizyka polimerów, PWN, Warszawa.
  • Rauschenbach, B., Gerlach, J.W., 2000, Texture development in titanium nitride films grown by low-energy ion assisted deposition, Cryst. Res. Technol., 35, 675-688.
  • Ravichandran, K.S., 1995, Thermal residual stresses in a Functionally Graded Material system, Mat. Sci. Eng., A201, 269-276.
  • Saliklis, E.P., Urbanik, T.J., Tokyay, B., 2003, Bilinear Modeling of Cellulosic Orthotropic Nonlinear Materials, J. Pulp and Paper Science, 29/12, 407-411.
  • Santhanam, A.T., Quinto, D.T. Grab, G.P., 1996, Comparsion of the Steel-Millinig Performance of Carbide Inserts with MTCYD and PVD TiCN Coatings, Int. J. Refractory Metals and Hard Materials, 14, 31 -40.
  • Scharer, S., Rohner, F., 2003, Hardening steel nitriding, Archieve Copy 2nd edition - Abridged, The Steelbands (Pan) of Trinidad and Tobago Archieves Database, http: //www. seetobago. com/trinidad/pan/archieve/r&d/pan art/ir_archievecopy_hardening_steel_by_nitriding.htm.
  • Schwarzer, R.A., 2005, Advances in the analysis of texture and microstructure, Arch. Metall. Mater., 50, 7-20.
  • Shouterden, K., Blanpain, B., Celis, J.P., Vingsbo, O., 1995, Fretting of titanium nitride and diamond-like carbon coatings at high frequencies and Iow temperature, Wear, 181-183,86-93.
  • Szeliga, D., Pietrzyk, M., 2002, Identification of Rheological and Tribological Parameters, Metal Forming Science and Practice, A State-of-the-art Volume in Honour of Professor J.A. Schey's 80th Birthday, ed., Lenard J.G., Elsevier, Amsterdam, 227-258.
  • Stoney, G.G., 1909, The tension of metallic films deposited by electrolysis, Proc. R. Soc. Lond., Ser. A82, 172-175.
  • Tabor, D., 1951, The Hardness of metals, Clarendon Press, Lon-don, 175.
  • Thogo, K., Sakaguchi, M., Ishii, H., 1996, Applicability of fracture mechanics in strength evaluation of functionally graded materials, JSME Int. J. Series, A 39, 479-488.
  • Thornton, J.A., 1974, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol., 11/4,666-670.
  • Wang, H.F., Bangert, H., 1993, Three-dimensional finite element simulation of Vickers indentation on coated systems, Mat. Sci. Eng., A163, 43-50.
  • Wu, P.-Q., Mohrbacher, H., Celis, J. P., 1996, The fretting behavior of PVD TiN coatings in aqueous solution, Wear, 201, 171-177.
  • Vieira, M.T., Ramos, A.S., 1999, The influence of ductile inter-layers on the mechanical performance of tungsten nitride coatings, J. Mat. Proc. Techn., 92-93, 156-161.
  • Volynskii, A.L., Bazhenov, S., Lebedeva, O.V., Ozerin, A.N., Bakeev, N.F., 1999, Multiple cracking of rigid platinum film covering polymer substrate, J. Appl. Polymer Sci., 72/10, 1267.
  • Volynskii, A.L., Bazhenov, S., Lebedeva, O.Y., Bakeev, N.F., 2000, Mechanical buckling instability of thin coatings deposited on soft polymer substrate, J. Mat. Sci., 35, 547-554.
  • Yang, Z.M., Zhou, Z.G., Zhang, L.M., 2003, Characteristics of residual stress in Mo-Ti functionally graded material with continuous change in composition, Mat. Sci. Eng., A359, 214-218.
  • E. Zoestbergen, 2000, X-ray analysis of protective coatings,
  • http://dissertations.ub.rug.nl/FILES/faculties/science/2000 /e.zoesterbergen/c5 .pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0013-0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.