PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Creep fatigue of multi-part container during hot extrusion of copper - Simulation and experimental comparison

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
pęknięcie zmęczeniowe wieloczęściowego pojemnika podczas wyciskania na gorąco - modelowanie i doświadczenie
Konferencja
14th KomPlasTech Conference, Zakopane, January 14-17, 2007
Języki publikacji
EN
Abstrakty
EN
Extrusion tools exhibit a complex strain-time pattern under a variety of cyclic loading conditions and thus are prone to failure by creep-fatigue interactions. Elevated temperature failure by creep-fatigue processes is time dependent and often involves deformation path dependent interactions of cracks with grain boundary cavities. The extrusion industry tries to accelerate the process by increasing the billet temperature and/or by accelerating the press speed that raise the loading of the tools. On the other side the tool steel producers develop enhanced more homogeneous and cleaner materials in order to increase tools lifetime. Finite element simulation of the extrusion process to get the temperature and stress evolution in the container, coupled with constitutive equations as well as lifetime consumption models in order to calculate both the inelastic strains and the tools lifetime, help to optimise the extrusion process and to compare the operating times of different hot work tool steels. Viscoplastic constitutive models were developed in the past to take into account the inelastic behaviour of the material during creep-fatigue loads. In the present study the Chaboche model was selected and calibrated to the material response of a hot work tool steel between 470°C and 590°C. To extend the prediction capability of Chaboche’s model for non-isothermal processes a temperature-rate term was added to the isotropic hardening rule. Additionally, a creep-fatigue lifetime rule for complex processes was investigated that is independent of single loading parameters, like stress or strain ranges or corresponding maxima, for the description of an entire cycle. Instead this rule evaluates the total damage in each time increment and accumulates that to the lifetime consumption. The present paper shows the development of temperatures, stresses and lifetime consumption during three copper extrusion cycles in a two-part container. The simulation of the heat treatment and the resulting state of the container used was the basis for the subsequent modelling of the cyclic loads during the press cycles. The numerical FEM extrusion simulation consists of the plastic simulation of the billet extrusion with rigid tools as well as of the subsequent simulation of several cycles of the same process, only considering the elastic container and using the time dependent temperature and pressure boundary conditions at the contact surface billet-liner. The reason for this procedure is the much shorter calculation time for the elastic container model with specified boundary conditions in comparison to the plastic extrusion process, especially for several extrusion cycles. Both a constitutive law and a lifetime consumption rule were coupled to the elastic container model in order to get the local inelastic strain rates and the damage rate, respectively. To verify the calculated temperature and pressure boundary conditions at the contact surface billet-liner, a experimental extruding plant was constructed. To obtain a pressure distribution, three holes at different levels were drilled into the container, with only a thin container wall thickness left. The pressure force is transmitted through a plug gauge with a ceramic temperature isolator to a load cell. The system plug gauge /load cell sustains the container wall against damage. The same drilled holes are also used for temperature measurements, measuring points are positioned near the inner wall of the liner, in the middle of the container and for heat control at the outer container region. For the chosen extrusion examples, the simulations led to maximum lifetime consumption in the region of relatively high both temperature and equivalent stresses. These results seem to be reasonable in comparison to real lifetime of copper extrusion containers.
PL
Artykuł przedstawia rozkład pól temperatur, naprężeń oraz zużycia materiału podczas trzech cykli wyciskania miedzi w dwuczęściowym pojemniku. Symulacja procesu obróbki cieplnej oraz ostateczny stan pojemnika zostały wykorzystane jako podstawa do opracowania kolejnych kroków zużycia materiału podczas cyklicznych etapów wyciskania. Symulacja numeryczna MES obejmuje modelowanie plastycznego wsadu i sztywnych narzędzi oraz kilku cykli tego samego procesu dla elastycznego pojemnika przy wykorzystaniu zależnych od czasu warunków brzegowych dla temperatury oraz nacisku. Powodem takiej procedury obliczeniowej jest krótszy czas symulacji niż w przypadku plastycznego procesu wyciskania. W celu weryfikacji obliczonych warunków brzegowych temperatury i nacisku na powierzchni styku, skonstruowano specjalną maszynę laboratoryjną do prowadzenia procesu wyciskania.
Słowa kluczowe
Wydawca
Rocznik
Strony
47--53
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
autor
autor
autor
  • Christian Doppler Laboratory For Materials Modelling And Simulation, University of Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
Bibliografia
  • Equations, Part I: A Thermodynamically Consistent Formulation,J. Appl. Mechanics, 60, 813-821.
  • Chaboche, J.-L., Gallerneau, F., 2001, An Overview of the Damage Approach of Durability Modelling at Elevated Temperature, Fatigue Fract. Engng. Mater. Struct., 24, 405-418.
  • Frenz, H., Meersmann, J., Ziebs, J., Kiihn, H.-J., Sievert, R., Olschewski, J., 1997, High-Temperature Behaviour of IN 738 LC under Isothermal and Thermo-mechanical Cyclic Loading, Mat. Sci. Eng., A 230, 49-57.
  • Krausz, A.S., Krausz, K., 1996, Unified Constitutive Laws of Plastic Deformation, Academic Press.
  • Krempl, E., 2001, Relaxation Behavior and Modeling, Int. J. Plasticity, 17, 1419-1436.
  • Lemaitre, J., Chaboche, J.-L., 1990, Mechanics of Solid Materials, Cambridge Univ. Press.
  • Majumdar, S., P.S. Maiya, P.S., 1980, A Mechanistic Model for Time-dependent Fatigue, J. Eng. Mat. Techn., 102 , 159-167.
  • Olschewski, J., Sievert, R., Bertram, A., 1993, Non-isothermal Investigations on Ni-based Superalloys, Aspects of High Temperature Deformation and Fracture in Crystalline Materials, Proc. JIMIS-7, eds, Y. Hosoi et al., The Japan Institute of Metals, Nagoya, 641-648.
  • Sermage, J.P., Lemaitre, J., Desmorat, R., 2000, Multiaxial Creep-Fatigue under Anisothermal Conditions, Fatigue Fract. Engng. Mater. Struci., 23, 241-252.
  • Sommitsch, C., Wlanis, T., Hatzenbichler, T., Wieser ,V., 2006 a, Creep Fatigue in Extrusion Dies - Modelling and Simulation, STEEL GRIPS, 4, 51-55.
  • Sommitsch, C., Sievert, R., Wlanis, T., Gunther, B., Wieser, V., 2006 b, Modelling of Creep-Fatigue in Containers during Aluminium and Copper Extrusion, J. Comput. Mat. Sci., in press.
  • Wieser, V., Sommitsch, C., Haberfellner, P., Lehofer, H., 2004, New Developments in the Design and Production of Container Assemblies, in: ET '04 - Proc. 8th Mer. Aluminium Extrusion Technology Seminar, Orlando, Vol. l, 309-316
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0013-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.