PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design and implementation of flexible, robust and efficient Grid-enabled hybrid QM/MD simulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the implementation of Grid-enabled hybrid Quantum Mechanics/Classical Molecular Dynamics (QM/MD) Simulation. The Grid-enabled QM/MD simulation is capable of (1) dynamic resource allocation and migration, (2) automatic recovery from faults, and (3) managing large number of CPUs in geographically distributed sites. In the implementation, both GridRPC and MPI are used to complement each other, that is, GridRPC allows dynamic resource allocation and migration and automatic recovery from faults while MPI provides high-performance parallel processing on each cluster. We ran the hybrid QM/MD simulation on an international Grid testbed in the Asia Pacific Region for about 52 days. The experimental results indicated that the hybrid QM/MD simulation could (1) adapt to the dynamic behavior of the simulation and can change the number of CPUs and the number of clusters, (2) adapt to unstable Grid infrastructure and recovers from faults automatically, and (3) manage hundreds to thousands of CPUs on distributed locations, and (4) survive for several weeks without interrupting manual operation. This paper reports on the details of the implementation, strategies for long-run, and experimental results.
Twórcy
autor
autor
autor
autor
  • National Institute of Advanced Industrial Science and Technology Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan, Yoshio.tanaka@aist.go.jp
Bibliografia
  • [1] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure, 2nd edition, Morgan Kaufmann Publishers, Inc. (2004).
  • [2] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Supercomputing Applications and High-Performance Computing 11(2), 115-128 (1997).
  • [3] H. Takemiya, K. Shudo, Y. Tanaka and S. Sekiguchi,Constructing Grid Applications Using Standard Grid Middleware, Grid Computing 1, 117-131 (2003).
  • [4] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu,E. Seidel and B. Toonen, Supporting Efficient Execution in Heterogeneous Distributed Computing Environments with Cactus and Globus, Proceedings of Supercomputing (2001).
  • [5] Pacific Rim Application and Grid Middleware Assembly (PRAGMA): http://www.pragma-grid.net/.
  • [6] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee and H. Casanova, Overview of GridRPC: A Remote Procedure Call API for Grid Computing, Proceedings of the 3rd International Workshop on Grid Computing, 274-278 (2002).
  • [7] MPI: http://www.mpi-forum.org/.
  • [8] J. H. Fendler (Ed.), Nanoparticles and Nanostructured Films, Wiley-VCH (1998).
  • [9] W. Kohn and P. Vashishta, General density functional theory, In Inhomogeneous Electron Gas, 79-184 (1983).
  • [10] S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta and R. Kalia, Hybrid finite-element/moleculardynamics/ electronic-density-functional approach to materials simulations on parallel computers, Computer Physics Communications 138, 143-154 (2001).
  • [11] H. Casanova, T. Bartol, J Stiles and F. Berman, Distributing MCell Simulations on the Grid, Journal of Supercomputing Applications 15(3), 243-257 (2001).
  • [12] T. Ikegami, H. Takemiya, U. Nagashiima, Y. Tanaka, and S. Sekiguchi, Accurate Molecular Simulation on the Grid - Replica Exchange Monte Carlo Simulation for C20 Molecule, IPSJ Transaction of Advanced Computing Systems,44(SIG11), 14-22 (2003).
  • [13] Global Grid Forum: http://www.ggf.org/
  • [14] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee and H. Casanova, A GridRPC Model and API for End-User Applications, Global Grid Forum Document, GFDR.P 52 (2005).
  • [15] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka, Ninf-G: A Reference Implemantation of RPC-based Programming Middleware for Grid Computing,Journal of Grid Computing 1(1), 41-51 (2003).
  • [16] Y. Tanaka, H. Takemiya, H. Nakada, and S. Sekiguchi,Design, implementation and performance evaluation of GridRPC programming middleware for a large-scale computational Grid, 5th International Workshop on Grid Computing, 298-305 (2004).
  • [17] W. Gropp, E. Lusk, N. Doss and A. Skjellum, A High- Performance, Portable Implementation of the MPI Message Passing Interface Standard, Parallel Computing 22,789-828 (1996).
  • [18] E. S. Snow and P. M. Campbell, AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties, Science 270, 1639-1641 (1995).
  • [19] D. Abramson, R. Buyya and J. Giddy, A Computational Economy for Grid Computing and its Implementation in the Nimrod/G Resource Broker, Future Generation Computer Systems 18(8), 1061-1074 (2002).
  • [20] N. Chalakornkosol and P. Uthayopas, Monitoring the Dynamics of Grid Environment using Grid Observer, Poster Presentation in CCGrid 2003 (2003).
  • [21] Hee-Khiang Ng, Quoc-Thuan Ho, Bu-Sung Lee, Dudy Lim, Yew-Soon Ong and Wentong Cai, Nanyang Campus Inter-organisational Grid Monitoring System, Proceedings of Grid Asia Workshop on Grid Computing and Applications,118-127 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0013-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.