PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The microfluid sensors of liquids, gases, and tissues based on the CNT or organic FETs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A superconducting field effect tronsistor bosed transducer (SuFETTr) for the micro- and nanofluidic sensors to measurs the electrical currents and mechanical flows has been described. SuFETTr device consists of either CNT or organic FETs with a superconducting property. The flowmeters are based on a common or superconducting induction sensors employing the magnetohydrodynamical and electrogase dynamical effects. The range of the calculated signals lies in the rangę of - (5^5) V, (7+0) •10 17cm3 molecutes, (2^10) pH, and stream speed (10 2+10 -3) m/s, flow (10 1-10 -5} m/s and hemoglobin concentration of (10 30 +10 24)molec/mm3. The ovailable cperating modes have been explained.
Twórcy
autor
  • Space Sensing Instruments, Verchratskogo st. 15-1, Lviv 79010 Ukraine, tel./fax: +380 322762432/769613, sr@triar.net
Bibliografia
  • [I] Weiss H., "Electrical measurement and instrumentations - today and tomorrow", Measurement, 1993,no. 12, pp. 191-210.
  • [2] Lucarelli F., Marrazza G., Turner A. P. F. et al., "Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors" (Review), Biosensors and Bioelectronics, 2004, no. 19, pp. 515-530.
  • [3] Kiguchi M., Nakayama M., Fujiwara K. et al., "Accumulation and Depletion Layer Thick-nesses in Organic Field Effect Transistors", Jpn. J. Appl. Phys., vol 42, 2003, no. 2, L1408-L141.
  • [4] Fromherz P., Vassanelli S., and Greeff N. G., NACHIP Project, Reference: IST-2001-38915. Available at: http://www.biochem.mpg.de/mnphys/europroject/project.html(2006).
  • [5] Bargiel S., Górecka-Drzazga A., Dziubana J. A. et al., "Nanoliter detectors for flow systems", Sens. Act. A, 2004, no. 115, pp. 245-251.
  • [6] Stroscio M. A., Dutta M., "Integrated biological-semiconductor devices", Proc. IEEE 93, 2005, pp. 1772-1783.
  • [7] Helmke B. P., Minerick A. R., "Designing a nano-interface in a microfluidic chip to probe living cells: Challenges and perspectives", PNAS, 2006, no. 103, pp. 6419-6424.
  • [8] Sklyar R., "A SuFET Based Either Implantable or Non-Invasive (Bio) Transducer of Nerve Impulses", 13th International Symposium on Measurement and Control in Robotics - ISMCR'03, Madrid, Spain 2003, pp. 121-126.
  • [9] Cheunga K. C., Renaudb Ph., "BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes", Solid-State Electronics, 2006, no. 50, pp. 551-557.
  • [10] Kanoun O., Tränkler H.-R., "Sensor Technology Advances and Future Trends", IEEE Trans. Instrum. Meas., 2004, no. 53, pp. 1497-1501.
  • [11] Lutz B. R., Chen J., and Schwartz D. T., "Microftuidics without microfabrication", PNAS, 2003, no. 10, pp. 4395-4398.
  • [12] Shaikh K. A., Ryu K. S., Goluch E. D., et al., "A modular microfluidic architecture for integrated biochemical analysis", PNAS, 2005, no. 102, pp. 9745-9750.
  • [13] Sinha N., Yeow J. T.-W., "Carbon Nanotubes for Bio-medical Applications", IEEE Trans. Nanobiosc., 2005, no. 4, pp. 180-195.
  • [14] Hopkins D. S., Pekker D., Goldbart P. M., et al., "Ouantum Interference Device Made by DNA Templating of Superconducting Nanowires", Science, 2005, no. 308, pp.1762-1765.
  • [15] Gross M, Altpeter D., Stieglitz T. et al., "Micromachining of flexible neural implants with low- ohmic wire traces using electroplating", Sens. Act. A, 2002, no. 96, pp. 105-110.
  • [16] K. C. Cheunga, Ph. Renaudb, "BioMEMS for medicine: on-chip cell characterization and implantable microelectrodes", Solid-State Electronics, 2006, no. 50, pp. 551-557.
  • [17] E. Arzt, S. Gorb, and R. Spolenak, "From micro to nano contacts in biological attachment devices", PNAS, 2003, vol. 100, pp. 10603-10606.
  • [18] R. G. Ellis-Behnke, Y.-X. Liang, S.-W. You et al., "Nanoneuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision", PNAS, 2006, vol 103, pp. 5054-5059.
  • [19] A. V. Liopo, M. P. Stewart, J. Hudson et al, Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface, J. Nanosci.Nanotechnol, 2006, no. 6, pp. 1365-1374.
  • [20] J. Thomas, "Nanowires: Domain walls", Nature Nanotechnology, (Published online: 8 December 2006 at : www.nature.com/nnano/reshigh/2006/1206//full/nnano.2006.186.html [doi:10.1038/nnano.2006.186].
  • [21] F. S. Ou, M. M. Shaijumon, L Ci et al., "Multisegmented one-dimensional hybrid structures of carbon nanotubes and metal nanowires", Appl. Phys. Lett., 2006, no. 89, 243122 (3 pages).
  • [22] J. F. Jiang, Q. Y. Cai, H. M. Jiang et al., "High-performance complementary metal-oxide-superconductor field effect transistor (CMOSuFET) current-modeoperational amplifier", Supercond. Sci. Technot., 1996, no. 9, pp. A66-A70.
  • [23] Sh. Suzuki, H. Tobisaka, and Sh. Oda, "Electric properties of coplanar high-Tc superconducting field-effect devices", Jpn. J. Appl. Phys., vol 37, 1998, Pt. 1, pp. 492-495.
  • [24] B. Yu, M. Meyyappan, "Nanotechnology: role in emerging nanoelectronics", Solid-State Electronics, 2006, no. 50, pp. 536-544.
  • [25] J. H. Schön, Ch, Kloc, and B. Batlogg, "High-temperture superconductivity in lattice-expanded C60", Science,2001, no. 293, pp. 2432-2434.
  • [26] J. H. Schön, H. Meng, and Z. Bao, "Field-effect modulation of the conductance of single molecules", Science, 2001, no. 294, pp. 2138-2141.
  • [27] K. Nakamura, M. Ichikawa, R. Fushiki et al., "Organic field-effect transistor of (thiophene/phenylene) cooligomer single crystals with bottom-contact configuration", Jpn. J. Appl. Phys., 2004, no. 43, L100-L102.
  • [28] T. Jung, B. Yoo, L. Wang et al., "Nanoscale n-channel and ambipolar organic field-effect transistors", Appl. Phys. Lett., 2006, no. 88,183102 (3 pages).
  • [29] J. A. Garrido, C. E. Nebel, and R. Todt, "Fabrication of in-plane gate transistors on hydrogenated diamond surfaces", Appl. Phys. Lett., 2003, no. 82, pp. 988-1000.
  • [30] P. Avouris, J. Appenzeller, R. Martel et al., Carbon nanotubeelectronics, Proc. of the IEEE, 2003, pp. 1772-1784.
  • [31] F. Nihey, H. Hongo, Y. Ochiai et al., "Carbon-nanotube field-effect transistors with very high intrinsic transconductance", Jpn. J. Appl Phys., 2003, Pt. 2,no. 42, L1288-L1291.
  • [32] Z. Zhong, D. Warmg, and Y. Cui, "Nanowire crossbar arrays as address decoders for integrated nanosystems",Science, 2003, no. 302,1377-1379.
  • [33] K. Keren, R. Berman, E. Buchstab et al., "DNA-templated carbon nanotube field-effect transistor", Science, 2003, no. 302, pp. 1380-1382.
  • [34] G. Stix, "Nano Patterning", Scientifc American, February 2004.
  • [35] S. Rosenblatt, Y. Yaish, J. Park et al., "High performance electrolyte gated carbon nanotube transistors",Nano Lett., 2002, no. 2, pp. 869-872.
  • [36] B. P. Helmke, A. R. Minerick, "Designing a nano-interface in a microfluidic chip to probe living cells: Challenges and perspectives", PNAS, 2006, vol. 103, pp. 6419-6424.
  • [37] S. Meyburga, M. Goryllb, J. Moersb et al., "N-channel field-effect transistors with floating gates for extracellular recordings", Biosens. Bioelectr., 2006, no. 21, pp. 1037-1044.
  • [38] Y. Cui, Q. Wei, H. Park et al., "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species", Science, 2001, no. 293, pp. 1289-1292.
  • [39] Ph. G. Collins, M. S. Arnold, and Ph. Avouris, "Engineering carbon nanotubes and nanotube circuits using electrical breakdown", Science, 2001, no. 292, pp. 706-709.
  • [40] R. Sklyar, "Superconducting Induction Magnetometer", IEEE Sensors J., 2006, no. 6, pp. 357- 364.
  • [41] D. Gevaux, "Microfluidics: Feel the flow", Nature Photonics (Published online: 7 December 2006 at: www.nature.com/nphoton/archive[doi:10.1038/nphot on.2006.71].
  • [42] B. R. Lutz, J. Chen, and D. T, Schwartz, "Microfluidics without microfabrication", PNAS, 2003, vol. 100, pp. 4395-4398.
  • [43] A. Sh. Kilsbeyli, A. M. Izmailov, V. M. Gurevich, "The Frequency-Time Ultrasound Flowratemeters and Counters", Mashynostroenie, 1984, Moscow.
  • [44] B. G. Ceytlin, The Technics of Measuring the Flow Rate and Quantity of Liquids, Gases and Vapors, Publishing of Standarts, Moscow, 1981.
  • [45] M. F. Feller, Patent US 4535637 (1985).
  • [46] R. G. Green, Patent GB 2147106 (1985).
  • [47] J. Knaak, Patent EP 0149771 (1985).
  • [48] R. Sklyar, Patent UA No65546, Ukrainian State Patent Office (2004), Bulletin No 4.
  • [49] Ch. Hilty, E. E. McDonnell, J. Granwehr et al., "Microfluidic gas-flow profiling using remote-detection NMR", PNAS, 2-5, vol.102, pp. 14960-14963.
  • [50] Physicat Encyclopedy, Moscow 2 (1990).
  • [51] A. B. Vatazhyn, The Electrogaseodynamical Flows, Moscow: Nauka, 1989.
  • [52] G. P. Chatzimavroudis, "Blood Flow Measurements With Magnetic Resonance Phase Velocity Mapping", Measurement, 2005, no. 37, pp. 201-212.
  • [53] A Big Medical Encyclopedy, Moscow 5 (1975).
  • [54] M. I. Kaganov, V. M. Tsukernic, A Nature of Magnetism, Library of "Kvant", Moscow 16,1982.
  • [55] S. Takadzumi, Physics of a ferromagnetism. The magnetic characteristics of a material, Moscow: Mir, 1983.
  • [56] K. Hayashi, T. Oguti, T. Watanabe, "Absolute Sensitivity of a High- Metal Core Solenoid as a Magnetic Sensor", J. Geomag. Geoelectr., 1978, no. 30, pp. 619-630.
  • [57] I. M. Hontar, L. YA. Mizyuk, R. V. Protz, "Wide band induction transducers of magnetic field strength with stable sensitivity in a frequency range", Otbor e obrabotka informatsee (in Rus.), 1983, no. 68, pp. 74-80.
  • [58] R. Sklyar, Patent UA No21185, Ukrainian State Patent Office (2000), Bulletin No 1.
  • [59] L. F. Zambresky, T. Watanabe, "Equivalent Circuit of a Magnetic Sensor Coil and a Simple Filter for Rejection of 60 Hz Man Made Noise", J.Geomag. Geoelectr., 1980, no. 32, pp. 325-331.
  • [60] K.-P. Estola, J. Malmivuo, "Air-Core Induction Coil Magnetometer Design", J. Phys. E: Sci. Instrum., 1982,no. 15, pp. 1110-1113.
  • [61] M. Jenkner, B. Muller, and P. Fromherz, "Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses", Biol. Cybern., 2001, no. 84, pp. 239-249.
  • [62] J. P. Wikswo, J. P. Barach, and J.A. Freeman, "Magnetic Field of a Nerve Impulse: First Measurements", Science,1980, no. 208, pp. 53-55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0012-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.