Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The structural properties and vibrationalmode of the transitionmetal Fe subnitrosyl complexes Fe(NO)n (n = 1–4) have been examined by using HF, B3LYP, B3P86 and B3PW91 methods at 6-311G basis set level. Results indicate that the interaction between Fe and NO should be characterized as a dative bond, in whichmonosynapic basin of the nitrogen plays the role of the disynapic basin connecting the metal core to the nitrogen atom. It shows that Fe(NO)n (n = 1–4) species have two states. Interestingly, for FeNO and Fe(NO)3 molecules, they are doublet (2 ) and quartet (4 ) states, while for Fe(NO)2 and Fe(NO)4 molecules, they are triplet ( 3 ) and quintet (5 ) states. The ground state of FeNO is of doublet (2 ) symmetry, but we have found that the two states of FeNO are very close in energy at different computational levels, and they are both belonging to Cv point group. For Fe(NO)2 species, the two states (3 and 5 ) have v-type structures (C2v point group) and linear structures (Dh point group). The same as FeNO species, the two states have similar energies. According to the analysis of the bond lengths, the ground state is the quintet (5 ) statewith a linear structure. In Fe(NO)3 species, the doublet(2 ) state and quartet (4 ) state are also close in energies, and they both have planar structures. The difference is that the doublet (2 ) state has a equilateral triangle structure, belonging to D3h point group, while the quartet (4 ) state has a isoceles triangle structure. The Fe(NO)4 species have a cube (Td point group) structure in the triplet (3 ) state and a similar cube structure in thequintet ( 5 ) state.Detailed bonding analysis has implied that the existence of the polynitrosyl Fe with more NOs and of other similar transition metal nitrosyl complexes is possible.
Wydawca
Czasopismo
Rocznik
Tom
Strony
573--589
Opis fizyczny
Bibliogr.30 poz., rys.
Bibliografia
- 1. Richter-Addo G.B. and Legzdins P., Metal Nitrosyls, Oxford University Press, New York (1992).
- 2. Hayton T.W., Legzdins P. and Sharp W.B., Chem. Rev., 102, 935 (2002).
- 3. Hu C.H. and Chong D.P., Chem. Phys. Lett., 262, 733 (1996).
- 4. Blanchet C., Duarte H.A. and Salahub D.R., J. Chem. Phys., 106, 8778 (1997).
- 5. Thomas J.L.C., Bauschlicher C.W. and Hall M.B., J. Phys. Chem. A, 101, 8530 (1997).
- 6. Addison A.W., J. Chem. Educ., 74, 1354 (1997).
- 7. Marchenko A.Y., Vedernikov A.N., Dye D.F., Pink M., Zaleski J.M. and Caulton K.G., Inorg. Chem.,41, 4087 (2002).
- 8. Coppens P., Fomitchev D.V., Carducci M.D. and Culp K., J. Chem. Soc., Dalton Trans., 865 (1998).
- 9. Novozhilova L.V., Coppens P., Lee J., Richter-Addo G .B. and Bagley K. A., J. Am. Chem. Soc., 128,2093 (2006).
- 10. Davidson G., Spectrosc. Prop. Organomet. Compd., 33, 306 (2000).
- 11. Stochel G., IlkowskaE., Pawelec M., Wanat A. and Wolak M.,ACHs Models Chem., 135,847 (1998).
- 12. Katana H.C. and Khan I.B., Orient. J. Chem., 15, 385 (1999).
- 13. Westcott B.L. and Enemark J.H., in Inorganic Electronic Structure and Spectroscopy, Solomon E.I., Lever A.B.P., Eds., John Wiley & Sons: New York, 2, 403 (1999).
- 14. Xu N., Powell D.R., Cheng L. and Richter-Addo G.B., Chem. Commun., 2030 (2006).
- 15. Tsai F.T., Chiou S.J., Tsai M.C., Tsai M.L., Huang H.W., Chiang M.H. and Liaw W.F., Inorg. Chem., 44, 5872 (2005).
- 16. Chen H.W., Lin C.W., Chen C.C., Yang L.B., Chiang M.H. and Liaw W.F., Inorg. Chem., 44, 3226 (2005).
- 17. Hung M.C., Tsai M.C., Lee G.H. and Liaw W.F., Inorg. Chem., 45, 6041 (2006).
- 18. Wang X.M. and Li L.J., Chem. Commun., 477 (2005).
- 19. Hayton T.W., J. Am. Chem. Soc., 125, 12935 (2003).
- 20. Jackson T.A., Yikilmaz E., Miller A.F. and Brunold T.C., J. Am. Chem. Soc., 125, 8348 (2003).
- 21. Rich A.M., Ellis P.J., Tennant L., Wright P.E., Armstrong R.S. and Lay P.A., Biochemistry, 38, 16491 (1999).
- 22. Beck W.G., Enzmann A. and Mayer P., Z. Anorg. Allg. Chem., 631, 105 (2005).
- 23. Copeland D.M., Soares A.S., West A.H. and Richter-Addo G.B., J. Inorg. Biochem., 100,1413 (2006).
- 24. Zhou Z.Y., Cheng X.L., Zhou X.M. and Fu H., Chem. Phys. Lett., 353, 281 (2002).
- 25. Parr R.G. and Yang W., Density Functional Theory ofAtoms andMolecules, Oxford University Press, New York (l989).
- 26. Lee C., Yang W. and Parr R.G., Phys. Rev. B, 37, 785 (1988).
- 27. Perdew J.P., Phys. Rev. B, 33, 8822 (1986).
- 28. Perdew J.P. and Wang Y, Phys. Rev. B, 45, 13244 (1992).
- 29. Zhou X.M., Zhou Z. Y, Fu H., Shi Y. and Zhang H.T., J. Mol. Struci. (Theochem), 714, 7 (2005).
- 30. Gong X.L., Zhou Z.Y., Zhang H. and Liu S.Z., J. Mol. Struct. (Theochem), 718, 23 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0009-0013