PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrazinium Complexes of Lanthanide and Transition Metal Squarates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reaction of the ligands, squaric acid and hydrazine with Ln(NO3)3 where Ln(III) = La, Pr, Nd, Sm, Gd and Ce results in the formation of the complexes of the formula, N2H5[Ln(C4O4)2]xH2O where x = 3, 5 and 6 and their reaction with transition metal nitrates, M(NO3)2xH2O, where M(II) = Co, Ni, Cu, Zn and Cd in aqueous solution yields the squarates of the types, [(N2H5)3M(C4O4)2.5]2H2O where M(II) = Co, Ni and Cd; [(N2H5)2Zn(C4O4)2]2H2O and [(N2H5)Cu(C4O4)1.5 ]. Neutralization of the acid with hydrazine hydrate gives dihydrazinium squarate hydrate, (N2H5)2(C4O4)H2O. All the above complexes, except Cd, are sparingly soluble in water and are characterized by IR, UV-visible, ESR and thermoanalytical methods. The squarates appear to behave as bis-monodentate and tetrakis-monodentate bridged ligands in transition metal and lanthanide complexes respectively. Hydrazinium cation acts as a coordinating ligand in transition metal complexes whereas it is a charge compensating species in lanthanide squarates. This fact is revealed from their IR spectra by displayingN-N frequency at 1000 cm–1 in the former case and at 950 cm–1 in the latter. Squarate compounds exhibit very high exothermic decomposition. Hydrazinium lanthanide squarates show weight losses due to dehydration and dehydrazination from 68 graduate C to 258 graduate C and a strong exothermic decomposition between 176 graduate C and 700 graduate C leading to the formation of metal oxides/oxy carbonates as the end products possibly via H[Ln(C4O4)2] intermediate. Transitionmetal compounds loose water and hydrazine in the range of 50–275 graduate C, and then undergo strong exothermic decomposition above 200 graduate C with no stable intermediate formation. Simple hydrazinium salt decomposes completely exothermally at 179 graduate C. The electronic spectra indicate the coordination number (CN) and geometry; CN 8 with square anti-prism for lanthanides and CN 6 with octahedral arrangement for transition metals. The geometry of the complexes is substantiated by their electronic spectra, magnetic
Słowa kluczowe
Rocznik
Strony
1601--1614
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Department of Chemistry, Bharathiar University, Coimbatore – 641 046, India
Bibliografia
  • 1. Lee C.R., Wang C.C. and Wang Y., Acta Cryst., B52, 966 (1996).
  • 2. Weiss A., Riegler E., Alt L, Bohme H. and Robl Ch., Z. Naturforsch, Tel., 41, 18 (1986).
  • 3. Frankenbach G.M., Beno M.A., Kini A.M., Williams J.M., Welp U. and Thompson J.E., Inorg. Chim. Acta, 192, 195 (1992).
  • 4. Robi Ch. and Kuhs W.F., J. Solid State Chem., 75, 15 (1988).
  • 5. Petit J.F., Gleizes A. and Trombe J.C., Inorg. Chim. Acta, 167, 51 (1990).
  • 6. Habenscheuss M. and Gerstein B.C., J. Chem. Phys., 61, 852 (1974).
  • 7. Galwey A.K. and Brown M.E., J. Chem. Soc. Faraday Trans. 1, 78, 411 (1982).
  • 8. Das D., Ghosh A. and Chaudhuri N.R., Bull. Chem. Soc. Jpn., 70, 789 (1997).
  • 9. SLett.en J., Daraghmeh H., Lloret F. and Julve M., Inorg. Chim. Acta, 279, 127 (1998).
  • 10. Castro L, Calatalyud M.L., SLetten J., Lloret F. and Julve M., Inorg. Chim. Acta, 287, 173 (1999).
  • 11. Trombe J.C., Petit J.F. and Gleizes A., Inorg. Chim. Acta, 167, 69 (1990).
  • 12. Brzyska W. and Ozga W., J. Therm. Anal, 32, 2001 (1987).
  • 13. Ribeiro S.J.L., Goncalves R. R., Luiz F.C., Olieveira D. and Santos P. S., J. Alloys Comp., 216,61 (1994).
  • 14. Khan M.I., Chang Y.D., Chen Q., Salta J., Lee Y.S., O'Connor C.J. and Zubieta J., Inorg. Chem., 33,6340 (1994).
  • 15. Chen Q., Liu S. and Zubieta J., Inorg. Chim. Acta, 164, 115 (1989).
  • 16. Bottomley F., Quart. Rev., 24, 617 (1970).
  • 17. Kuppusamy K. and Govindarajan S., Eur. J. Solid State Inorg. Chem., 32, 997 (1992).
  • 18, Vogel A.I., ATextbookof Quantitative Inorganic Analysis, Longmann, London, 1975, pp. 380 and 433.
  • 19. Carnall W.T., Fields P.R. and Rajnak K., J. Chem. Phys., 49, 4412 (1968).
  • 20. Tandon S.P. and Mehta P.C., J. Chem. Phys., 52, 4896 (1968).
  • 21. Lever A.B.P., Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984, pp. 481, 513 and 565.
  • 22. Headley O.St.C. and Hall L.A., Polyhedron, 5,1829 (1986).
  • 23. Brown D.B., Donner J.A., Hall J.W., Wilson S.R., Wilson R.B., Hodgson D.J. and Hatfield W.E., Inorg. Chem.,n, 2635 (1979).
  • 24. Braibanti A., Dallavalle F., Pellinghelli M.A. and Laporati E., Inorg. Chem., 7, 1430 (1968).
  • 25. Lindgren J., Villepin D.J. and Novak A., Chem. Phys. Lett., 84 (1969).
  • 26. Shettino V. and Salmon R.E., Spectrochim. Acta, 30,1445 (1974).
  • 27. Wu. J.Q., Song Y.M., Deng R.W. and Chen Z.N., Chem. Papers, 53(3), 210 (1999).
  • 28. Lales M.I.G., Melios C.B., D1 Assuncao L.M. and lonashiro M., Eclet. Quim., 24 (Sao Paulo), 29 (1999); (Abstract in Portuguese and English; text in English); ed. Instituto de Quimica /UNESP, Brazil.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0005-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.