PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of radon hazard to inhabitants of the Augustów Plane sandr and inhabitants of the Suwałki region of fluvioglacial sands and gravels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a region of two lithologic units: the Augustów Plane sandr and the Suwałki sands and fluvioglacial gravels, 134 measurements of radon concentrations in dwelling houses were performed. An integral method of solid state nuclear trace detectors (SSNTD) was used in the studies. Statistically significant differences in the radon concentrations in both geological units were obtained. The radon concentration arithmetic mean was 197 Bq m-3, geometric mean - 119 Bq m-3, median - 111 Bq m-3, the maximal value being 1225 Bq m-3 in the region of the Suwałki fluvioglacial sands and gravels. The Augustów Plane sandr revealed arithmetic mean of radon concentration equal to 123 Bq m-3, geometric mean – 80 Bq m-3, and median equal to 67 Bq m-3, maximal value 695 Bq m-3. The annual effective dose of the radon obtained by inhabitants of the Augustów Plane sandr is 1.7 mSv and for inhabitants of the Suwałki fluvioglacial sands and gravels it is 2.5 mSv.
Słowa kluczowe
EN
Czasopismo
Rocznik
Strony
197--200
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Department of Biophysics, Medical University of Białystok, 2A Mickiewicza Str., 15-089 Białystok, Poland, Tel.: +48 85/ 748 56 67, Fax: +48 85/ 748 54 16
  • Polish Geological Institute, 4 Rakowiecka Str., 00-975 Warsaw, Poland
  • Central Laboratory for Radiological Protection, 7 Konwaliowa Str., 03-194 Warsaw, Poland
autor
  • Department of Biophysics, Medical University of Białystok, 2A Mickiewicza Str., 15-089 Białystok, Poland, Tel.: +48 85/ 748 56 67, Fax: +48 85/ 748 54 16
autor
  • Department of Biophysics, Medical University of Białystok, 2A Mickiewicza Str., 15-089 Białystok, Poland, Tel.: +48 85/ 748 56 67, Fax: +48 85/ 748 54 16
Bibliografia
  • 1. Åkerblom G (1986) Investigation and mapping of radon risk areas: Lulea, Sweden. Swedish Geological Report no. IRAP 96036
  • 2. Albering HJ, Hoogewerff JA, Kleinjans JCS (1996) Survey of 222Rn concentrations in dwellings and soils of the Belgian border region. Health Phys 70:64−69
  • 3. Alter HW, Fleischer RL (1981) Passive integrating radon monitor for environmental monitoring. Health Phys 40:693−702
  • 4. Biernacka M, Henschke J, Jagielak J, Korczyński A, MamontCieśla K (1991) Preliminary measurements of the natural ionization radiation in three types of buildings in Poland. Postępy Fizyki Medycznej 26:55−66
  • 5. Garbesi KALR, Sextro RG, Nazaroff WE (1999) Radon entry into houses: the importance of scale-dependent permeability. Health Phys 77;2:183−191
  • 6. Ielsch G, Thieblemont D, Labed V et al. (2001) Radon (Rn222) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates. J Environ Radioact 53:75−90
  • 7. Jagielak J, Biernacka M, Hensche J, Sosińska A (1998) Radiation atlas of Poland 1997. Central Laboratory for Radiological Protection, Warsaw
  • 8. Karpińska M, Wołkowicz S, Mnich Z, Zalewski M, MamontCieśla K, Kapała J (2002) Comparative studies of health hazard from radon (Rn-222) in two selected lithologic formations in the Suwałki region (in Poland). J Environ Radioact 61:149−158
  • 9. Kearfott KJ, Metzger RL, Holbert KE (1992) Underground air returns as active transportation pathways for radon gas entry into homes. Health Phys 63;6:665−673
  • 10. Law Gazette (1995) Monitor Polski No. 35:419 (in Polish)
  • 11. Lis J, Pasieczna A (1995) Geochemical atlas of Poland(1:2 500 000). Polish Geological Institute, Warsaw
  • 12. Martinelli G (1998) Gas geochemistry and 222Rn migration processes. Radiat Prot Dosim 78;1:77−82
  • 13. NAEA (2002) Information of the National Atomic Energy Agency on the state of nuclear safety and radiological protection in Poland in 2001. Bezpieczeństwo i Ochrona Radiologiczna 2:32−44 (in Polish)
  • 14. Pinel J, Fearn T, Darby SC, Miles JCH (1995) Seasonal correction factors for indoor radon measurements in the United Kingdom. Radiat Protect Dosim 58:127−132
  • 15. Reimer GM, Gundersen LCS (1989) A direct correlation among indoor Rn, soil gas Rn and geology in the Reading Prong near Boyertown Pennsylvania. Health Phys 57:155−160
  • 16. Revzan KL, Fisk WJ, Sextro RG (1993) Modelling radon entry into Florida slab-on-grade houses. Health Phys 65:375−385
  • 17. UNSCEAR (1993) Sources, effects and risks of ionizing radiation. United Nations, New York 18. Urban M, Piesch E (1981) Low level environmental radon dosimetry with a passive track etch detector device. Radiat Prot Dosim 1:97−109
  • 19. Wrixon AD, Green BMR, Lomas PR et al. (1998) Natural radiation exposure in UK dwellings. London: Her Majesty’s Stationery Office. Report no. NPRB-R190
  • 20. Zalewski M, Karpińska M, Mnich Z, Kapała J (1998) Radon concentrations in buildings in the North-Eastern region of Poland. J Environ Radioact 40:147−14
  • 21. Zalewski M, Mnich Z, Karpińska M, Kapała J, Zalewski P (2001) Indoor radon concentrations in Poland as determined in short-term (two-day) measurements. Radiat Prot Dosim 95;2:157−163
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0004-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.