PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An algorithm for the calculation of heavy ion ranges in SiO2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heavy ion ranges in amorphous SiO2 have been calculated by using a technique based on solution of first order ODE’s. Br, Au, Hg, Bi, projectiles have been chosen as incident ion. Since the target is assumed to be amorphous, Bragg’s rule can be used to calculate electronic and nuclear stopping powers in the compound. Numerical solutions have been performed by using Fehlberg fourth-fifth order Runge-Kutta method. The results are compared with experimental data, as well as with the result of the Monte Carlo program SRIM and other standard procedures such as PRAL and WS [19]. It is found that the agreement between our method and the experiment is good and within 10%.
Słowa kluczowe
Czasopismo
Rocznik
Strony
145--149
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Physics Department, Ondokuz Mayis University, 55139 Samsun, Turkey, Tel.: +90/ 362 457 6020 5259, Fax: +90/ 362 457 6081
autor
  • Physics Department, Ondokuz Mayis University, 55139 Samsun, Turkey, Tel.: +90/ 362 457 6020 5259, Fax: +90/ 362 457 6081
Bibliografia
  • 1. Bethe HA (1930) Zu..r Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann Phys 5:324−400
  • 2. Biersack JP (1982) New projected range algorithm as derived from transport equations. Z Phys A: Atoms and Nuclei 305:95−101
  • 3. Bohr N (1913) On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philos Mag 25:10−31
  • 4. Bohr N (1915) On the decrease of velocity of swiftly moving electrified particles in passing through matter. Philos Mag 30:581−612
  • 5. Bowyer MDJ, Ashworth DG, Oven RJ (1994) A revised version of the projected range algorithm with numerical solutions. Radiat Eff Defects Solids 130/131:535−557
  • 6. Bragg WH, Kleeman R (1905) On the α-particles of radium,and their loss of range in passing through various atoms and molecules. Philos Mag 10:318−340
  • 7. Chu WK, Crowder BL, Mayer JW, Ziegler JF (1973) Range distribution of implanted ions in SiO2, Si3N4, and Al2O3. ApplPhys Lett 22;10:490−492
  • 8. Firsov OB (1959) Qualitative interpretation of the meanelectron excitation energy in atomic collisions. Sov Phys JET 36:1076−1080
  • 9. Gibbons JF, Johnson WS, Mylroie SW (1975) Projected range statistics. Pennsylvania, Stroudsburg10. Grande PL, Fichtner PFP, Behar M et al. (1987) Projected ranges and range stragglings of Au and Bi implanted into carbon-films and into SiO2. Nucl Instrum Meth Phys Res B 19;2:25−27
  • 11. Kabadayi Ö, Gümüs, H (2001) Calculation of average projected range and range straggling of charged particles in solids. Radiat Phys Chem 60:25−31
  • 12. Lindhard J, Scharff M, Schiott HE (1963) Range concepts and heavy ion ranges. K Dan Vidensk Selsk Mat Fys Medd 33;14:359−401
  • 13. Montenegro EC, Cruz SA, Vargas-Aburto C (1982) A universal equation for the electronic stopping of ions in solids. Phys Lett A 92;4:195−201
  • 14. Narmann A, Sigmund P (1994) Statistics of energy loss and charge exchange of penetrating particles: higher moments and transients. Phys Rev A 49:4709−4715
  • 15. Sigmund P (1994) Analysis of charge dependent stopping of swift ions. Phys Rev A 50:3197−3201
  • 16. Sigmund P (1997) Charge-dependent electronic stopping of swift nonrelativistic heavy ions. Phys Rev A 56:3781−3793
  • 17. Sigmund P (1998) Stopping power in perspective. Nucl Instrum Meth Phys Res B 135;1:1−15
  • 18. Wang KM, Liu XJ, Wang YH, Liu JT, Guo HY, Shi BR (1987) Range profiles of 50 to 400 keV Hg+ in quartz crystal. Phys Lett A 125:399−402
  • 19. Wang KM, Shi BR (1990) Calculation of mean projected range and range straggling of heavy ions in polyatomic targets. J Phys D 23:1282−1289
  • 20. Wang KM, Wang YY, Liu JT (1988) Range profiles of50−400 keV Br+ in amorphous-silicon and quartz crystal. Scientia Sinica Series A 31;6:706−714
  • 21. Winterbon KB (1986) Calculating moments of range distributions. Nucl Instrum Meth Phys Res B 17:193−202
  • 22. Ziegler JF (2000) SRIM2000 program. Stopping and rangesions in matter, ver. 2000. IBM-Research, Yorktown
  • 23. Ziegler JF, Biersack JP, Littmark U (1985) The stopping andrange of ions in solids. Pergamon Press, New York
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0004-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.