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Introduction

Penetration of charged particles into solid targets has been
a point of interest for various purposes such as nuclear
fusion technology, materials science and radiation medicine
for decades. However, this interest shifted towards the ion
implantation as it becomes the major method used to form
impurities into solids. It is the most frequently used
technique for the doping of semiconductors in today’s elec-
tronic devices. The development of basic theory of energetic
particle penetration of solids is due to Bohr’s pioneering
classical treatment of energy loss of particles [3, 4]. Bethe
[1], Firsov [8] and several others established quantum
mechanics of energy loss on the basis of Bohr’s concepts.
An excellent review of subject is written by Sigmund [17]
which summarizes earlier historical developments and
importance of concept over the years.

Ion implantation is frequently used to modify surface
properties of materials. Therefore, the projected range R−p,
as the mean ion range, is of great importance in such
fields as materials science and technology, microelectronic
devices and radiation medicine [17]. In device processing,
dopant species are implanted into a dielectric or through a
dielectric coating into underlying Si. In contrast to studies
of range distributions in silicon, there are less experimental
data on implantation profiles in commonly used dielectric
layers such as SiO2 [7]. Gibbons et al. [9] have calculated
and tabulated ranges and range straggling in SiO2 based
on LSS [13] predictions. However, over the two last decade,
our knowledge of stopping and theoretical approaches to
the range calculations have been improved thanks to a
number of publications [2, 23]. In the present work, a new
technique has been applied to calculate the heavy ion
ranges in amorphous SiO2. The technique is extension of
Kabadayi’s method used for mono-atomic targets [11].
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Our goal is to find an efficient method for easy and
accurate calculation of heavy ion ranges in SiO2. The
present work essentially aims to show that by optimum
choice of parameters in range calculation it is still possible
to find accurate range data even in a compound target. In
addition to that, in some cases the use of our technique
leads to more satisfactory results than PRAL and WS
concerning projected ranges of ions in diatomic targets such
as SiO2. In the present work, the following reasons make
the calculations efficient and comparable to other tech-
niques. First, our technique uses an electronic stopping
power mechanism which is valid at non-relativistic veloc-
ities in all solid targets and is consistent with experimental
data in a wide range of energies [13]. Primary advantage
of this formula is that a single expression for electronic
stopping can be used for low, medium and high energy
regions. Second, an optimum choice of parameters is made,
first by reducing the second order differential equation of
Bowyer et al. [5] to the first order whereas the second order
coefficients in stopping powers are considered for efficient
and accurate evaluation. Since the precision of the results
ultimately may depend on the numerical method employed
for the ODE solution, we used a Runge−Kutta ODE solver
of higher order.

Theory

There are a number of techniques using different
mechanisms to calculate ranges of ions in solids. However,
one of the simplest methods was improved by Biersack for
slowing down of ions in matter based on the analysis of direc-
tional angular spread of ion motion as a function of energy
[2]. Although this method has been widely used since 1982,
it was Bowyer et al. who revised projected range algorithm
(PRAL) due to some irregularities in finding PRAL
equations. It was, then, shown that KRAL equations are
superior to PRAL when they were compared with the
experiment and standard theories [5]. Second order diffe-
rential equation of Bowyer et al. for range calculation is
the following

(1)

First simplification is performed by reducing the second
order differential equation into the first order. Then the
equation that is required to find projected range can be
written as follows if the second order energy loss moments
are kept:

(2)

Even further simplification is possible by neglecting the
second order stopping parameters. Thus, the following
equation can be derived

(3)

In these equations,  R−p stands for projected range, E is
the initial ion energy and µ = M2/M1 where M1 is the ion
mass and M2 is the target mass. Sn and St stand for the
nuclear stopping power and the total stopping power,
respectively. Qn is the second moment of the nuclear energy
loss. In our calculations eq. (2) is used as including high
order stopping inputs and being first order differential
equation for fast numerical solution.

In order to solve both equations (1) or (2) numerically,
coefficients of differential equation must be determined.
These are mainly given by electronic energy loss, nuclear
energy loss, second moment of nuclear energy loss and
µ = M2/M1. For calculating the electronic stopping power
Se, the formulas derived by Montenegro et al. [13] for ions
moving in solid targets at non-relativistic velocities was
used. These formulas differ from those used by Ziegler et
al. [23] applied to PRAL and also from those previously
used by Bowyer et al. [5] applied to KRAL. This formula
can be applied in a wide energy range with a single express-
ion and are easy to handle. However, Ziegler’s electronic
stopping power expression consists of different formulas
for various energy regions and a number of fitting par-
ameters which is time consuming process in calculation.

In calculation of stopping powers, charge state of the
incident ion can be important especially for slow ions since
electron capture and loss cross sections is small at higher
energies. Effect of charge state of the projectile during the
energy loss procedure have been studied and has extensive
literature [12, 15, 16]. As the ion moves through the
medium certain events such as excitation, charge exchange,
ionisation occur. At high energies ionisation is the main
source of energy loss, however other processes such as
electron capture and loss and excitations becomes
important at low energies. As the Montenegro formula
combines all the probabilities from low, medium and high
energy regions, it takes into account all of contributions
depending on velocity of the particles. Thus, this formula
can be used for all energy regions of stopping [13].

According to Bohr’s stripping criteria, the particles
moving faster than orbital velocity of the electrons are
assumed to be stripped off its electrons. Therefore, in our
calculations charge state of the incident ion is not con-
tributing to the energy loss cascades significantly as we
consider the swift ions in our calculations. Thus, this
technique can be used even for the slow ions since
Montenegro formula that we used in our calculations is
designed for all energy regions and consider contributions
from all energy loss mechanisms [13].

In the case of nuclear stopping power, we have used an
expression of Ziegler et al. though the contribution of
nuclear stopping is small at higher energies [23]. In order
to obtain the projected range with high precision, it is
necessary to consider higher energy loss moments in
nuclear stopping. Since low energy ions are slowed down
mainly by elastic collisions and lose their energy in relatively
large amounts, the electronic straggling is of minor influence
at low energies and contributes to range straggling only at
high energy (E >> 1 MeV for light ions). For most appli-
cations, the second moment of the electronic energy loss
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Qe might, therefore, be neglected as in the LSS calculations
[12]. The second moment Qn of the nuclear energy loss
is, however, of importance. It can be calculated using
a formula given by Ziegler et al. [23].

Diatomic targets

In many applications of ion implantation in device processing,
dopant species are implanted in dielectric layers such as
SiO2. Gibbons et al. [9] have calculated and tabulated the
ranges and the straggling in SiO2 based on LSS predictions.
Grande et al. [10] have studied the projected range of Au
and Bi ions in implanted amorphous SiO2.

There are two different methods to extend our technique
[11] to diatomic targets. The first method employs Bragg’s
rule which states that the stopping power of a compound
may be calculated by the linear combination of stopping
powers of the individual elements [6]. The second technique
uses an averaged atomic number and an averaged atomic
mass to form an artificial single element. However, Bragg’s
rule was applied only to the electronic stopping in PRAL.
Bowyer et al. [5] showed that Bragg’s rule is superior to the
average atomic number technique. Therefore, in the present
work, Bragg’s rule was applied to all input quantities. Using
Bragg’s rule input quantities which are coefficients of
differential equation (2) can be found as follows:

(4)

(5)  

(6)

where n is the number of elements in compounds and W(E),
K(E) and L(E) are the coefficients of the differential
equations (see for details Ref. [5]).

Details of calculation

Bowyer et al. [5] presented a modified set of equations
called the Kent optimised range algorithm (KORAL)
which is designed for iterative solution. They used a novel
iterative refinement technique based on the method
developed by Winterbon [21] and a variable step ODE
solver based on Adam’s method to calculate ranges of ions
in solids.

The numerical solution of eqs. (1) and (2) are, in
principle, the solution of an initial value problem where
the initial conditions must be well defined. For this purpose,
we used the same method as that proposed by Biersack [2]
in the low energy region. In a first step, our program
calculates the initial parameters of electronic stopping
power, nuclear stopping power and nuclear energy loss
straggling. These results are then used to determine the
coefficients of the differential equations at various points

of the energy grid. A high order Runge−Kutta technique
is applied to find numerical solution of eq. (2).

Results and discussion

In this section, a number of comparisons with experimental
data for implantation of heavy ions such as Hg, Au, Bi and
Br into amorphous SiO2 were made to show the reliability
of our method. Our results with respect to the projected
range of Au ions implanted into amorphous SiO2 are also
compared with the results calculated from PRAL97, SRIM
and LSS, with the numerical results of Wang and Shi
[18] and with the experimental data taken from Grande et
al. [10]. The atomic density of SiO2 target was assumed to
be 2.21 g/cm3 in the present calculation. Figure 1 is a plot
of projected range vs. incident ion energies for implanta-
tion of Au ions into amorphous SiO2. The solid curve re-
presents calculated results using our technique, and squares
show the experimental data of [10] and a comparison with
other standard methods is also given in Fig. 1. We found
good agreement with experiment when compared with
other methods. In Table 1, presented are results and a com-
parison with SRIM, PRAL97, WS, LSS and experi-
ment for the incident ion energies between 15 keV and
400 keV for Au implantation into SiO2. LSS data was taken
from Gibbons et al. [9]. SRIM calculations were performed
in a standard PC, the number of ions being 105 for each
simulation and the density of SiO2 target was 2.21g/cm3

for all the ion target combinations.
As it is shown in Fig. 1, there is close agreement between

the calculated projected ranges and the experimental data
with the average error of 6.86% for the case of Au implant-
ation into SiO2. However, the average errors for PRAL,
SRIM, LSS and WS are 7.10, 7.27, 25.62 and 11.68,
respectively (see Table 2). This comparison shows that our
work, SRIM and PRAL give similar results; however, LSS
and WS predictions differ from experiment signifi-
cantly with greater average error rates. We found good
agreement with the literature even with the simplifications
that we introduced in the current work. Thus, it is seen that
the projected range calculated using our method yields
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Fig. 1. Comparison of calculated projected ranges R
−

p of Au ions
implanted into SiO2 with PRAL, WS, SRIM, LSS and with
experimental data. The solid line represents the data calculated
by the present method.
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reasonable results within considered energy range for Au
ions implanted into SiO2 when compared with experiment.

Figure 2 shows a comparison of our results for Bi ions
implanted at the energies for incident ion from 10 to
400 keV into amorphous SiO2 with SRIM, LSS, WS and
with the experimental data taken from [10]. Although our
results match the SRIM results for energies above 50 keV,
for the lower energies our results are in better agreement
with the experiment. Figure 3 compares the experimental
values of the projected ranges of Br ions [20] with the calcu-
lation results for implantation energies from 50 to 400 keV.
Agreement is obtained between the experimental and the
calculated projected range. SRIM results seem in better

agreement with experiment for the case of Br ions
implanted into SiO2. However, our results are situated
between LSS predictions and SRIM for this case. Table 3
lists the comparisons between the experimental data,
Monte Carlo simulation SRIM [22], LSS procedure, WS
and our results for Bi ions implanted at energies from 10
to 400 keV.

An inspection of the average errors for Bi projectiles
shows that the average error between our results and the
experiment is 12% whereas the results of WS differ from
experiment by about 27%. A comparison of the maximum
errors reveals the fact that our results are again better than
those of WS, as being 21% and 44% for the latter. In the
case of the minimum error, our calculation and WS gives
5% and 12%, respectively.

Finally, the calculated values for mercury ions implanted
into SiO2 are shown along with SRIM, LSS and with
experimental data of [18] in Fig. 4. An inspection of Fig. 4
clearly indicates that perfect matching exists between the

Energy Experiment PRAL WS [19] SRIM LSS Our study
(keV) (nm) (nm) (nm) (nm) (nm) (nm)

  15   13.5   14.1   16.2   14.9   13.80

  20   14.2   16.4   18.7   17.4   11.1   17.18

  30   20.0   20.5   23.4   21.8   14.6   21.32

  50   31.5   27.6   31.3   29.5   20.7   28.48

  70   36.5   33.9   38.2   36.3   26.2   34.87

100   46.9   48.1   45.6   33.7   43.70

200   70.0   68.6   77.3   74.1   56.3   70.15

400 123.0 115.9 131.0 124.4   97.6 118.13

Table 1. Experimental, PRAL, SRIM, LSS, WS and the calculated
values of projected range for Au ions implanted into SiO2.

Table 2. Comparison of percentage errors relative to experimental
data for Au ions implanted into SiO2.

Our study PRAL WS SRIM LSS

Maximum error (%) 21.00 15.49 31.69 22.53 34.88

Average error (%)   6.86  7.10 11.68   7.27 25.62

Minimum error (%)   0.22  2.00   0.63   0.54 19.57

Energy Experiment SRIM LSS WS Our study
(keV) (nm) (nm) (nm) (nm) (nm)

  10      9.4    12.3   6.9    13.5   11.4

  15    11.2    15.1    16.6

  20    14.0    17.6 11.1    19.1   16.8

  30    18.5    21.9 14.5    23.8   21.2

  50    26.0    29.6 20.6    31.6   28.7

  70    34.5    36.1 26.1    38.6   35.4

100    39.5    45.2 33.6    48.3   44.6

200    65.5    72.7 55.7    77.0   71.8

400 115.0  121.3 95.8  129.0 120.8

Table 3. Comparisons between experimental data, Monte Carlo
simulation SRIM, LSS procedure, WS and our results for Bi ions
implanted into SiO2.

Fig. 3. Comparison of experimental, SRIM, LSS and calculated
values of the projected range R

−
p of Br ions implanted into SiO2 at

energies between 50 keV and 400 keV. The solid line represents
the results of this study; the squares represent the experimental
data of [20]. Circle and up triangle represents SRIM and LSS,
respectively.

Fig. 2. Comparison of calculated values of the projected range
R
−

p with SRIM, LSS, WS with experimental data of Bi ions
implanted into SiO2 at energies between 10 keV and 400 keV.
The solid line represents the results of this study; the squares
represent the experimental data of [10] and the meaning of other
symbols were given in the Figure.
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calculated and the experimental values for the energies
above 200 keV and general agreement was found between
SRIM and our results.

Conclusion

In this study, a simplified method based on KRAL equation
has been developed for the easy and efficient calculation
of the projected range in diatomic targets such as SiO2.
This procedure can be used for prediction of ion implantation
profiles. Although, Monte Carlo programs calculate ion
ranges and angular distributions quite well, the major
disadvantage of this method is that it is inherently a computer
time-consuming procedure since a large number of ions is
required to simulate only one energy. Our method is
simpler and in some cases also more accurate than other
comparable methods. In this method, running a single
program range of ions for various ion target combinations
and a wide range of energies can easily be found in a short
time. This method uses nuclear stopping power presented
by Ziegler et al. [23], electronic stopping power equation
found by Montenegro et al. [13], a Runge−Kutta ODE
solver of higher order. The calculated values of the
projected range of some heavy ions in SiO2 have been
compared with the experimental data and other techniques
such as Monte Carlo program SRIM, PRAL, LSS and WS.
The comparison shows that the calculated results are in
close agreement with experimental data and commonly
used procedures such as SRIM and in most cases shows an
average error around 10%. The present method has shown
to be easy to handle and in some cases is more accurate
than other comparable methods and it can be used to
reliably predict heavy ion ranges in compounds such as
SiO2.
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