Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The possibility of bioaccumulation of uranium species in beer yeast was investigated. The behaviour of the Saccharomyces cerevisiae–UO2 2+ system was studied vs. contact time, pH and anion nature with no ionic competition. Analysis of the data revealed the following optimal working conditions: contact time = 1 h, pH = 6.5 and 10-1 M UO2(CH3COO)2 solution as uranyl source; as a result, the maximum degree of bioaccumulation attends a value nearly 8.75 mmol UO2 2+/g yeast. Both, a scanning electron microscope (SEM) and amino acid determinations lead to the conclusion that the uranyl nitrate solution may devastate the yeast cells provoking membrane damage and the release of the cell constituents (including the bioaccumulated uranium species). The results suggest the possible use of Saccharomyces cerevisiae as a biological decontaminant of uranium containing wastewaters.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
121--125
Opis fizyczny
Bibliogr. 22 poz.,rys.
Twórcy
autor
- Department of Inorganic Chemistry, Faculty of Chemistry, “Al. I. Cuza” University, 11 Carol I Blvd, 6600 – Iasi, Romania, Tel.: +40/ 232 272478, Fax: +40/ 232 201313
autor
- Department of Inorganic Chemistry, Faculty of Chemistry, “Al. I. Cuza” University, 11 Carol I Blvd, 6600 – Iasi, Romania, Tel.: +40/ 232 272478, Fax: +40/ 232 201313
autor
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, “Al. I. Cuza” University, 11 Carol I Blvd, 6600 – Iasi, Romania
autor
- Department of Inorganic Chemistry, Faculty of Chemistry, “Al. I. Cuza” University, 11 Carol I Blvd, 6600 – Iasi, Romania, Tel.: +40/ 232 272478, Fax: +40/ 232 201313
autor
- Department of Inorganic Chemistry, Faculty of Chemistry, “Al. I. Cuza” University, 11 Carol I Blvd, 6600 – Iasi, Romania, Tel.: +40/ 232 272478, Fax: +40/ 232 201313
Bibliografia
- 1. Al Saraj M, Abdel Latif MS, El Nahal I, Baraka R (1999) Bioaccumulation of some hazardous metals by sol-gel entrapped microorganisms. J Non-Cryst Solids 248:137−140
- 2. Anderes Y, Redercher S, Thouand G (1999) Microorganisms as potential vectors of the migration of radionuclides? Czech J Phys 49;S1:197−204
- 3. Blackman WC Jr (ed.) (2001) Basic hazardous waste management, 3rd ed. Lewis Publishers, Boca Raton
- 4. Cecal A, Palamaru I, Popa K, Caraus I, Rudic V, Gulea A (1999)
- 5. Choppin GR, Rydberg J, Liljenzin JO (1995) Radiochemistry and nuclear chemistry. Butterwoth−Heinemann, New York
- 6. Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12034−12048
- 7. Coetzee H, Chervel S, Cottard F (2002) Inter-disciplinary studies of the impact of gold and uranium mining in the Witwatersrand goldfield. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Berlin, pp 552−559
- 8. Cunningham KW, Fink GR (1994) Ca2+ transport in accharomyces cerevisiae. J Exp Biol 196:157−166
- 9. Drochioiu G, Sunel V, Oniscu C, Basu C, Murariu M (2001) The breakdown of plant biostructure followed by amino acids determination. Roum Biotechnol Lett 6;2:155−165
- 10. Haas JR, Bayley EH, Purvis OW (1998) Bioaccumulation of metals by lichens: uptake of aqueous uranium by Petligera membranacea as a function of time and pH. Am Mineral 83:1494−1502
- 11. Haas JR, Dichristina TJ, Wade R Jr (2001) Thermodynamics of U(VI) sorption onto Shewanella putrefaciens. Chem Geol 180:33−54
- 12. Kamizono A, Nishizawa M, Teranishi T, Murata K, Kimura A (1998) Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol Gen Genet 219:161−167
- 13. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109−120
- 14. Meinrath A, Schneider P, Meinrath G (2003) Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen,Germany. J Environ Radioact 64:175−193
- 15. Merroun M, Henning C, Rossberg A, Reich T, Nicolai R,Heise K-H, Selenska-Pobell S (2002) Characterization of uranium(VI) complexes formed by different bacteria relevant to uranium mining waste piles In: Merkel BJ, PlanerFriedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Berlin, pp 505−511
- 16. Mirsky N, Weiss A, Dori Z (1980) Chromium in biological systems I. Some observations on glucose tolerance factor in yeast. J Inorg Biochem 13:11−21
- 17. Pearson BM, Hernando Y, Payne J, Wolf SS, Kalogeropoulos A, Schweizer M (1996) Sequencing of a 35.71 kb DNA segment on the right arm of yeast chromosome XV reveals regions of similarity to chromosomes I and XIII. Yeast 12;10B:1021−1031
- 18. Poole RK, Gadd GM (eds) (1989) Metal−microbe interaction. IRL Press, Oxford
- 19. Popa K, Cecal A, Grigoriu G, Palamaru MN, Craciun II, Paraschiv G (2002) On clearing up the mechanisms of radiocations bioaccumulation on Lemna minor by IR spectrometry. Anal St Univ Al I Cuza-Iasi 10;1:15−21
- 20. Simionescu C, Rusan V, Popa V (1974) The chemistry of seaweeds. Romanian Academy, Bucharest
- 21. Strandberg GW, Shumate SE, Parrot JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237−245
- 22. Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. J Appl Microbiol Biotechnol 42:797−806
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0004-0022