PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free electrons: fundamental interactions, applications and data needs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the Low Energy Electron-Molecule Interactions - 2nd International Symposium, August 29th - September 2nd, 2002, Chlewiska/Siedlce, Poland
Języki publikacji
EN
Abstrakty
EN
In spite of the important recent advances in the field of low-energy electron interactions with atoms and molecules, there still exist fundamental needs and challenges, some of which are generic in their basic and applied significance. These include measurements of cross sections for a number of fundamental low-energy electron–ground-state molecule interaction processes such as vibrational excitation (direct and indirect) and dissociation into neutral fragments, studies of low-energy electron–excited molecule interactions, investigations of low-energy electron interactions with radicals and transient species, and measurements of electron energy losses in electron–molecule collision processes. They also include studies for linking of knowledge on isolated electron–molecule interactions to that in the condensed phases of matter, and the systematic and quantitative exploration of the interactions of low-energy electrons with molecular and macromolecular biological structures.
Słowa kluczowe
Czasopismo
Rocznik
Strony
67--74
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Academy of Athens, 28 Panepistimiou Str., Athens 106 79, Greece, Tel.: +302/ 10 963 6825, Fax: +302/ 10 963 6707, lgchrist@otenet.gr
Bibliografia
  • 1. Ali MA, Irikura KK, Kim Y-K (2000) Electron-impact total ionization cross sections of SFx (x = 1−5). Int J Mass Spectrom 201:187−195
  • 2. Bakale G, McCreary RD (1987) A physico-chemical screening test for chemical carcinogenesis: the ke. Carcinogenesis 8:253−264
  • 3. Bakale G, Sowada U, Schmidt WF (1976) Effect of an electric field on electron attachment to SF6, N2O, and O2 in liquid argon and xenon. J Phys Chem 80:2556−2559
  • 4. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by lowenergy (3 to 20 eV) electrons. Science 287:1658−1660
  • 5. Buckman SJ, Elford MT, Newman DS (1987) Electron scattering from vibrationally excited CO2. J Phys B: At Mol Opt Phys 20:5175−5182
  • 6. Celotta R, Brown H, Molof R, Bederson B (1971) Measurements of the total cross section for the scattering of low-energy electrons by metastable argon. Phys Rev A 3:1622−1628
  • 7. Christophorou LG (1971) Atomic and molecular radiation physics. Wiley Interscience, New York
  • 8. Christophorou LG (ed.) (1984) Electron−molecule interactions and their applications, Vols 1−2. Academic Press, New York
  • 9. Christophorou LG (1985) Mean energy of excess electrons in liquid Ar as a function of E/N; electron attachment to N2O in gaseous and liquid Ar. Chem Phys Lett 121:408−411
  • 10. Christophorou LG (1994) Linking the gaseous and the condensed phases of matter: the slow electron and its interactions. In: Christophorou LG, Illenberger E, Schmidt WF (eds) Linking the gaseous and the condensed phases of matter: the behavior of slow electrons. Plenum Press, New York, pp 3−30
  • 11. Christophorou LG, Datskos PG, Faidas H (1994) Photodetachment in the gaseous, liquid, and solid states of matter. J Chem Phys 101:6728−6742
  • 12. Christophorou LG, Illenberger E, Schmidt WF (eds) (1994) Linking the gaseous and the condensed phases of matter: the behavior of slow electrons. Plenum Press, New York
  • 13. Christophorou LG, McCorkle DL, Christodoulides AA (1984) Electron attachment processes. In: Christophorou LG (ed) Electron−molecule interactions and their applications. Academic Press, New York. Vol. 1, chapter 6, pp 477−617
  • 14. Christophorou LG, Olthoff JK (1999) Electron interactions with plasma processing gases: an update for CF4, CHF3, C2F6, and C3F8. J Phys Chem Ref Data 28:967−982
  • 15. Christophorou LG, Olthoff JK (2000) Electron collision data for plasma-processing gases. Adv At Mol Opt Phys 44:59−98
  • 16. Christophorou LG, Olthoff JK (2000) Electron interactions with excited atoms and molecules. Adv At Mol Opt Phys 4:155−293
  • 17. Christophorou LG, Olthoff JK (2003) Fundamental electron interactions with plasma processing gases. Kluwer Academic/Plenum Publishers, New York (in print)
  • 18. Deutsch H, Becker K, Matt S, Märk TD (2000) Theoretical determination of absolute electron-impact ionization cross sections of molecules. Int J Mass Spectrom Ion Processes 197:37−69
  • 19. Dixon AJ, Harrison MFA, Smith ACH (1973) Ionization of metastable rare gas atoms by electron impact. In: Cobic BC, Kurepa MV (eds) Proc of the VIII Int Conf on the Physics of Electronic and Atomic Collisions, Belgrade, pp 405−406
  • 20. Faidas H, Christophorou LG, McCorkle DL (1992) Laser photodetachment in liquids: C6F6 −* in tetramethylsilane. Chem Phys Lett 193:487−492
  • 21. Faidas H, Christophorou LG, McCorkle DL, Carter JG (1990) Electron drift velocities and electron mobilities in fast room temperature dielectric liquids and their corresponding vapors. Nucl Instrum Meth Phys Res A 294:575−582
  • 22. Ferch J, Granitza B, Masche C, Raith W (1985) Electronargon total cross section measurements at low energies by time-of-flight spectroscopy. J Phys B: At Mol Opt Phys 18:967−983
  • 23. Ferch J, Masche C, Raith W (1981) Total cross section measurement for e-CO2 scattering down to 0.07 eV. J Phys B: At Mol Opt Phys 14:L97−L100
  • 24. Hunter SR, Carter JG, Christophorou LG (1988) Low-energy electron drift and scattering in krypton and xenon. Phys Rev A 38:5539−5551
  • 25. Huo WM, Tarnovsky V, Becker K (2002) Total electronimpact ionization cross-sections of CFx and NFx (x = 1−3). Chem Phys Lett 358:328−336
  • 26. Jaffke T, Meinke M, Hashemi R, Christophorou LG, Illenberger E (1992) Dissociative electron attachment to singlet oxygen. Chem Phys Lett 193:62−68
  • 27. Jost K, Bishing PGF, Erchen F, Felsmann M, Walther J (1983). In: Proceedings of the XIII Int Conf on the Physics of Electronic and Atomic Collisions, p 91
  • 28. Karwasz GP, Brusa RS, Zecca A (2001) One century of experiments on electron−atom and molecule scattering: a critical review of integral cross sections. Riv Nuovo Cimento 24;4:1−101
  • 29. Krishnakumar E, Srivastava SK (1988) Ionization cross sections of rare-gas atoms by electron impact. J Phys B: At Mol Opt Phys 21:1055−1082
  • 30. Mi L, Bonham RA (1998) Electron−ion coincidence measurements: the neutral dissociation cross section of CF4. J Chem Phys 108:1910−1914
  • 31. Miller LS, Howe S, Spear WE (1968) Charge transport in solid and liquid Ar, Kr, and Xe. Phys Rev 166:871
  • 32. Milloy HB, Crompton RW, Rees JA, Robertson AG (1977) The momentum transfer cross section for electrons in argon in the energy range 0−4 eV. Austr J Phys 30:61−72
  • 33. Morrison MA, Lane NF, Collins LA (1977) Low-energy electron−molecule scattering: application of closed-channel theory to e-CO2 collisions. Phys Rev A 15:2186−2201
  • 34. Motlagh S, Moore JH (1998) Cross sections for radicals from electron impact on methane and fluoroalkanes. J Chem Phys 109:432−438
  • 35. Nakano T, Sugai H (1992) Partial cross sections for electron impact dissociation of CF4 into neutral radicals. Jpn J Appl Phys, Part 1 31:2919−2924
  • 36. Nickel JC, Imre K, Register DF, Trajmar S (1985) Total electron scattering cross sections: I. He, Ne, Ar, Xe. J Phys B: At Mol Opt Phys 18:125−133
  • 37. Rapp D, Briglia DD (1965) Total cross sections for ionization and attachment in gases by electron impact. II. Negative-ion formation. J Chem Phys 43:1480−1489
  • 38. Robinson EJ (1969) Electron scattering by metastable rare gases. Phys Rev 182:196−200
  • 39. Sakai Y, Nakamura S, Tagashira H (1985) Drift velocity of hot electrons in liquid Ar, Kr, and Xe. IEEE Trans Elect Insul 20:133−137
  • 40. Sanche L (1991) Primary interactions of low-energy electrons in condensed matter. In: Ferradini C, Jay-Gerin J-P (eds) Excess electrons in dielectric media. CRC Press, Boca Raton, chapter 1
  • 41. Sowada U, Holroyd RA (1979) Laser photodetachment from O2 − in non-polar liquids. J Chem Phys 70:3586−3591
  • 42. Sowada U, Holroyd RA (1980) Laser photodetachment spectra of C6F6 − in nonpolar liquids. J Phys Chem 84:1150
  • 43. Sugai H, Toyoda H, Nakano T, Goto M (1995) Absolute cross sections for the electron-impact dissociation of CF4 and CHF3 into the CFx (x = 1−3) neutral radicals. Contrib Plasma Phys 35:415−420
  • 44. Tarnovsky V, Deutsch H, Martus KE, Becker K (1998) Electron impact ionization of the SF5 and SF3 free radicals. J Chem Phys 109:6596−6600
  • 45. Tarnovsky V, Kurunczi P, Rogozhnikov D, Becker K (1993) Absolute cross sections for dissociative electron impact ionization of the CFx (x = 1−3) free radicals. Int J Mass Spectrom Ion Processes 128:181−194
  • 46. Winters HF, Inokuti M (1982) Total dissociation cross section of CF4 and other fluoroalkanes for electron impact. Phys Rev A 25:1420−1430
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0004-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.