PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The kinetics of 1,1-dichloroethene (CCl2=CH2) and trichloroethene (HClC=CCl2) decomposition in dry and humid air under the influence of electron beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New experimental data related to the removal of C2H2Cl2 and C2HCl3 in dry and humid (300 ppm of H2O) air at atmospheric pressure and a temperature of 25°C under the influence of electron beam in the dose range 1 < D < 100 kGy are published. Taking into account these experimental data, theoretical models of the decomposition of both compounds and computer simulations were performed by the present authors to find the kinetics of such processes. The influence of active atoms Cl, O and OH radicals on the VOC degradation process has been established. The theoretical model of C2H2Cl2 degradation under the influence of electron beam in dry and humid air describes the C2H2Cl2 decay and formation of the main products like Cl2, COCl2, CO, CO2, HCl, HCOCl and C2H2Cl2O. The results of calculation of the kinetics of C2H2Cl2 decomposition were compared with data obtained experimentally for the C2H2Cl2 concentration range 321-2213 ppm. It was established that the relation between the rate constants of intermediate product decomposition: C2H2Cl3O Ţ C2H2Cl2O + Cl; (k1) C2H2Cl3O Ţ COCl2 + CH2C2; (k2) should be k1/k2 = 40. The theoretical model of C2HCl3 degradation under the influence of electron beam in dry and humid air describes the C2HCl3 decay and formation of the main products like Cl2, COCl2, CO, CO2, HCl, HCOCl and C2HCl3O. A detailed comparison of experimental and theoretical data for the C2HCl3 concentration 108-3206 ppm shows that the relation between the rate constants of intermediate product decomposition: C2HCl4O Ţ C2HCl3O + Cl; (k3) C2HCl4O Ţ COCl2 + CHCl2; (k4) should be k3/k4 =10. It was also found that O2+ ions have been formed in a gas mixture as a result of charge transfer process from N2+ ions, partly in excited form, which may lead to charge transfer to C2HCl3 and degradation of those particles. According to performed calculation, it can be stated that in humid air (300 ppm of H2O) VOC degradation is occurring mainly due to a chain reaction stimulated by Cl atoms, but also OH radicals are playing an important role. In the described gas mixture, the OH radicals are formed in the following reactions: O2+) + H2O + M Ţ (O2+)H2O + M O2+ (H2O) + H2O Ţ O2 + (H3O+)OH (H3O+)OH + H2O Ţ H3O+ + OH + H2O VOC degradation process under the influence of electron beam is more effective in humid air than in dry air for the same initial VOC concentration level. This conclusion is also supported by experimental data. --------------------------------------------------------------------------------
Czasopismo
Rocznik
Strony
45--50
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • IRPCP, Academy of Sciences Republic of Belarus, Minsk-Sosny, Belarus
autor
  • IRPCP, Academy of Sciences Republic of Belarus, Minsk-Sosny, Belarus
autor
  • IRPCP, Academy of Sciences Republic of Belarus, Minsk-Sosny, Belarus
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22/ 811 23 47, Fax: +48 22/ 811 15 32
autor
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22/ 811 23 47, Fax: +48 22/ 811 15 32
autor
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22/ 811 23 47, Fax: +48 22/ 811 15 32
autor
  • Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, U.S.A.
Bibliografia
  • 1. Bugaenko WL, Grichkin WL (1980) Program for modeling of chemical kinetics. Report ITEP no. 50. Institute of Theoretical and Experimental Physics, Moscow
  • 2. Chanin LM, Phelps AV, Biondi MA (1962) Measurements of the attachment of low-energy electrons to oxygen molecules. Phys Rev 128:219−228
  • 3. Hakoda T, Yang M, Hirota K, Hashimoto S (1998) Decomposition of volatile organic compounds in air by electron beam and gamma ray irradiation. J Adv Oxid Technol 3;1:79−86
  • 4. Hakoda T, Zhang G, Hashimoto S (1999) Decomposition of chloroethens in electron beam irradiation. Radiat Phys Chem 54:541−546
  • 5. Hasson AS, Smith IWM (1999) Chlorine atom initiated oxidation of chlorinated ethenes: results for 1,1-dichloroethene (H2C=CCl2), 1,2-dichloroethene (HClC=CClH), trichloroethene (CHClC=CCl2), and tetrachloroethene (Cl2C=CCl2). J Phys Chem A 103:2031−2043
  • 6. Koch M, Cohn DR, Patrick RM et al. (1995) Electron beam atmospheric pressure cold plasma decomposition of carbon tetrachloride and trichloroethylene. Environ Sci Technol 29:2946−2952
  • 7. Penetranre BM, Hsio MC, Bradsley JN et al. (1995) Electron beam pulsed corona processing of carbon tetrachloride in atmospheric pressure gas streams. Phys Lett A 209:67−77
  • 8. Sanhueza E, Hisatsune IC, Heicklen J (1976) Oxidation of haloethylenes. Chem Rev 76;6:802−826
  • 9. Schultes E, Christodoulides AA, Schindler RN (1975) Studies by the electron cyclotron resonance (ECR) technique. Chem Phys 8:354−365
  • 10. Sun Y, Hakoda T, Chmielewski AG et al. (2000) Decomposition of 1,1-dichloroethylene in humid air under electron beam irradiation (abstract no. 192). In: Proc 5th Int Symp & Exhibition on Environmental Contamination in Central & Eastern Europe, Prague, p. 114
  • 11. Tsuji M, Funatsu T, Matsumura K, Nishimura Y (1993) Thermal energy reactions of CO2 + with chloromethanes. J Chem Phys 99;6:4526−4532
  • 12. Upadhyaya HP, Kumar A, Naik PD, Sapre AV (2000) Discharge kinetic studies of O(3P) with chloroethylenes CH2CCl2, CHClCCl2, CCl2CCl2. Chem Phys Lett 321:411−418
  • 13. Vitale SA, Hadidi K, Cohn DR, Bromberg L (1997a) Decomposition of 1,1-dichloroethane and 1,1-dichloroethene in an electron beam generated plasma reactor. J Appl Phys 81;6:79−86
  • 14. Vitale SA, Hadidi K, Cohn DR, Blomberg L (1997c) Evaluation of reaction rate constants for chlorinated ethylene and ethane decomposition in attachment-dominated atmospheric pressure dry-air plasmas. Physics Lett A 232:447−455
  • 15. Vitale SA, Hadidi K, Cohn DR, Falkos P (1997b) The effect of a carbon-carbon double bond on electron beam-generated plasma decomposition of trichloroethylene and 1,1,1-trichloroethane. Plasma Chem Plasma Proces 17;1:59−78
  • 16. Zhu Li, Bozzelli JW, Wen-Pin Ho (1999) Reaction of OH radical with C2H3Cl: rate constant and reaction pathway analysis. J Phys Chem A 103:7800−7810
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0004-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.