PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of nanostructured tetragonal ZrO2 of enhanced thermal stability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 2nd Polish-Japanese Workshop on Materials Science "Materials for Sustainable Development in the 21st Century" 12-15 October 2005, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
Hydrous zirconia particles of nanometric dimensions were synthesized via forced hydrolysis of zirconyl chloride. Prolonged aging at 100°C in the mother liquor and subsequent calcination produced a single-phase tetragonal ZrO2 of enhanced thermal stability with the narrow size and pore distributions. The influence of the preparation conditions on the phase composition of the resultant zirconium dioxide was examined using structural (XRD, SEM/TEM) and spectroscopic (Raman) methods, supported by thermal analysis (DTA/TG, DSC) and N2-porosimetry. The nature of the parent salt, pH of the solution, the temperature of precipitation and aging, were found to be the key parameters of the successful synthesis. The sequence of mechanistic steps invoked to account for the formation of t-ZrO2 was rationalized using the concepts of zirconium aquatic chemistry.
Czasopismo
Rocznik
Strony
27--33
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
autor
autor
  • Faculty of Chemistry, Jagiellonian University, 3 Ingardena Str., 30-060 Kraków, Poland and Regional Laboratory of Physicochemical Analyses and Structural Research, 3 Ingardena Str., 30-060 Kraków, Poland, adamski@chemia.uj.edu.pl
Bibliografia
  • 1. Afanasief P, Thiollier A, Breysse M, Dubois JL (1999) Control of the textural properties of zirconium dioxide.Top Catal 8:147−160
  • 2. Barrett EP, Joyner LG, Halenda PH (1951) The determination of pore volume and area distributions in porous substances. J Am Chem Soc 73:373−380
  • 3. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309−319
  • 4. Chen S-G, Yin Y-S, Wang D-P (2004) Experimental and theoretical investigation between aqueous precursors structure and crystalline phases of zirconia. J Mol Struct 690:181−187
  • 5. Chraska T, King AH, Berndt ChC (2000) On the sizedependent phase transformation in nanoparticulate zirconia. Mater Sci Eng A 286:169−178
  • 6. Christensen A, Carter EA (1998) First-principles study of the surfaces of zirconia. Phys Rev B 58:8050−8064
  • 7. Chuah GK, Liu SH, Jaenicke S, Li J (2000) High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous Mesoporous Mater 39:381−392
  • 8. Clearfield A (1964) Structural aspects of zirconium chemistry. Rev Pure Appl Chem 14:91−108
  • 9. Clearfiled A, Serrette GPD, Khazi-Syed AH (1994 )Nature of hydrous zirconia and sulfated hydrous zirconia.Catal Today 20:195−312
  • 10. Clearfield A, Vaughan PA (1956) The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate. Acta Crystallogr 9:555−558
  • 11. Dell’Agli G, Ferone C, Mascolo G, Pansini M (2000)Crystallization of monoclinic zirconia from metastable phases. Solid State Ionics 127:223−230
  • 12. Dyrek K, Adamski A, Sojka Z (2001) ZrO2 as catalyst and catalysts support. In: Yoo H-I, Kang S-JL (eds)Ceramic interfaces 2, IOM communications. Cambridge University Press, London, pp 241−259
  • 13. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystal size effect. J Phys Chem 69:1238−1243
  • 14. Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel. Nature 258:703−704
  • 15. Hirata T, Asari E, Kitajima M (1994) Infrared and Raman spectroscopic studies of ZrO2 polymorphs doped with Y2O3 and CeO2. J Solid State Chem 110:201−207
  • 16. Horvath G, Kawazoe K (1983) Method for the calculation of the effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16:470−475
  • 17. Jakubus P, Adamski A, Kurzawa M, Sojka Z (2003)Texture of zirconia obtained by forced hydrolysis of ZrOCl2 solutions. J Therm Anal Calorim 72:299−310
  • 18. Jolivet JP (2000) Metal oxide chemistry and synthesis. Wiley, Chichester
  • 19. Jung KT, Bell AT (2000) The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia. J Mol Catal A 163:27−42
  • 20. Matsui K, Ohgai M (1997) Formation of hydrous zirconia particles produced by hydrolysis of ZrOCl2 solutions. J Am Ceram Soc 80:1949−1956
  • 21. Matsui K, Ohgai M (2000) Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOCl2 solutions. J Am Ceram Soc 83:1386−1392
  • 22. Mercera PDL, van Ommen JG, Doesburg EBM,Burggraaf AJ, Ross JRH (1991) Zirconia as a support for catalysts. Appl Catal 71:363−391
  • 23. Norman CJ, Goulding PA, McAlpine I (1994) Role of anions in the surface stabilization of zirconia. Catal Today 20:313−322
  • 24. Sánchez-Escribano V, Fernández-López E, Panizza M,Resini C, Gallardo-Amores J-M, Busca G (2003)Characterization of cubic ceria-zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy.Solid State Sci 5:1369−1376
  • 25. Tani E, Yoshimura M, So - myia S (1983) Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions. J Am Ceram Soc 66:11−14
  • 26. Wang JA, Valenzuela MA, Salmones J, Vázquez A, García-Ruiz A, Bokhimi X (2001) Comparative study of nanocrystalline zirconia prepared by precipitation and sol-gel method. Catal Today 68:21−30
  • 27. Wells AF (1993) Structural inorganic chemistry. WniT, Warsaw (Polish edition)
  • 28. Yamaguchi T (1994) Application of ZrO2 as a catalyst and a catalyst support. Catal Today 20:199−218
  • 29. Zhu WZ, Lei TC, Zhou Y, Ding ZS (1996) Kinetics of isothermal transition from tetragonal to monoclinic phase in ZrO2 (2 mol% Y2O3) ceramic. Mater Chem Phys 44:67−73
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0003-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.