PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of high quality doped CeO2 solid electrolytes with nanohetero structure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 2nd Polish-Japanese Workshop on Materials Science "Materials for Sustainable Development in the 21st Century" 12-15 October 2005, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
Doped ceria (CeO2) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650°C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO2] electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO2. It is essential that the electrolytic properties in doped CeO2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO2 electrolytes in the fuel cells.
Czasopismo
Rocznik
Strony
11--18
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
autor
autor
autor
  • Ecoenergy Materials Group, Ecomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, Tel.: +81 29 860 4395, Fax: +81 29 852 7449, MORI.Toshiyuki@nims.go.jp
Bibliografia
  • 1. Buchanan R, Mori T, Wang Y, Ou DR, Drennan J (2006) Fabrication of dense GdxCe1−xO2−x/2 sintered bodies with nano-size grain and its conducting properties. Mater Trans Japan 30;4:955−958
  • 2. Buttler V, Catlow CRA, Fender BEF, Harding JH (1983)Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8:109−113
  • 3. Eguchi K, Kunisaki T, Arai H (1986) Effect of microstructures on the ionic conductivity of ceria-calcia oxides.J Am Ceram Soc 69;11:C282−C285
  • 4. Gerhart R, Nowick AS (1986) Grain-boundary effect in ceria doped with trivalent cations: I. Electrical measurement.J Am Ceram Soc 69;9:641−646
  • 5. Gerhart R, Nowick AS, Mochel ME, Dumler I (1986)Grain-boundary effect in ceria doped with trivalent cations: II. Microstructure and microanalysis. J Am Ceram Soc 69;9:647−651
  • 6. Hamakawa S, Hayakawa T, York APK et al. (1996)
  • Selective oxidation of propene using an electrochemical membrane reactor with CeO2 based solid electrolyte. J Electrochem Soc 143;4:1264−1268
  • 7. Hong SJ, Mehta K, Virkar AV (1998) Effect of microstructure and composition on ionic conductivity of rare-earth oxide doped ceria. J Electrochem Soc 145;2:638−647
  • 8. Kilner J (2000) Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129:13−23
  • 9. Li JG, Ikegami T, Mori T, Wada T (2001) Reactive Ce0.8Re0.2O1.9 (Re=La,Nd,Sm,Gd,Dy,Y,Ho,Er, and Y) powders via carbonate precipitation. 1. Synthesis and characterization. Chem Mater 13;9:2913−2920
  • 10. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76;3:563−588
  • 11. Mori T, Drennan J, Lee JH, Li JG, Ikegami T (2002)Oxide ionic conductivity and microstructure of Sm or La doped CeO2 based system. Solid State Ionics 154/155:461−466
  • 12. Mori T, Drennan J, Wang Y, Auchterlonie G, Li JG (2004) Influence of nanostructural features on electrolytic properties of Gd doped CeO2 solid electrolytes. J Ceram Soc Jpn 112;5:S642−S648
  • 13. Mori T, Drennan J, Wang Y, Auchterlonie G, Li JG, Yago A (2003) Influence of nanostructural feature on electrolytic properties in Y2O3 doped CeO2 system. J Sci Technol Adv Mater 4:213−220
  • 14. Mori T, Drennan J, Wang Y, Lee JH, Li JG, Ikegami T (2003) Electrolytic properties and nanostructural feature in La2O3-CeO2 system. J Electrochem Soc 15;6:A665−A673
  • 15. Mori T, Drennan J, Wang Y, Li JG, Ikegami T (2002)Influence of nanostructure on electrolytic properties in CeO2 based system. J Therm Anal Calorim 70:309−319
  • 16. Mori T, Kobayashi T, Wang Y et al. (2005) Synthesis and characterization of nanohetero-structured Dy doped CeO2 solid electrolytes using combination process of spark plasma sintering and conventional sintering. J Am Ceram Soc 88;7:1981−1984
  • 17. Mori T, Wang Y, Drennan J, Auchterlonie G, Li JG,Ikegami T (2004) Influence of particle morphology on nano-structural feature and conducting property in Sm-doped CeO2 sintered body. Solid State Ionics 175:641−649
  • 18. Ou DR, Mori T, Ye F, Takahashi M, Zou J, Drennan J (2006) Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: dopant concentration and grain size dependence. Acta Mater (in press)19. Riess I, Braunshtein D, Tannhauser DS (1981) Density and ionic conductivity of sintered (CeO2)0.82(GdO1.5)0.18.J Am Ceram Soc 64;8:479−485
  • 20. Singman D (1966) Preliminary evaluation of cerialanthana as a solid electrolyte as a solid electrolyte for fuel cell. J Electrochem Soc 113;5:502−505
  • 21. Steel BCH (2001) Materials for fuel-cell technologies.Nature 414;15:345−352
  • 22. Wang Y, Mori T, Drennan J, Li JG, Yajima Y (2004)Low temperature synthesis of 10 mol% Gd2O3-doped CeO2 ceramics and its characterization. J Ceram Soc Jpn 112;5:S41−S45
  • 23. Wang Y, Mori T, Li JG (2006) Synthesis, characterization and sinterability of 10 mol% Sm2O3-doped CeO2 nanopowders via carbonate precipitation. J Eur Ceram Soc 26;4/5:419−422
  • 24. Wang Y, Mori T, Li JG, Drennan J (2005) Synthesis, characterization, and electrical conduction of 10 mol% Dy2O3-doped CeO2 ceramics. J Eur Ceram Soc 25:949−956
  • 25. Wang Y, Mori T, Li JG, Ikegami T, Yajima Y (2003)Low-temperature preparation of dense 10 mol%-Y2O3-doped CeO2 ceramics using powders synthesized via carbonate co-precipitation. J Mater Res Soc 18;5:1239−1246
  • 26. Wang Y, Mori T, Li JG, Yajima Y (2003) Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics. J Sci Technol Adv Mater 4:229−238
  • 27. Yahiro H, Baba Y, Eguchi K, Arai H (1988) High temperature fuel cell with ceria-yttria solid electrolyte.J Electrochem Soc 135;8:2077−2080
  • 28. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45;15/16:2423−2435
  • 29. Yamazoe N, Miura N (1999) Gas sensors using solid electrolytes. MRS Bull 24;6:37−43
  • 30.Ye F, Mori T, Ou DR, Takahashi M, Zou J, Drennan J (2006) Influence of microstructure on ionic conductivity of ytterbium doped ceria. J Am Ceram Soc (in press)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0003-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.