Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Adiabatic (vertical) ionization potential (IP) and valence electron affinity (EA) of gaseous alfa-alanine have been determined by density functional theory (B3LYP), ab initio Hartree-Fock (HF) calculations and ab initio third order algebraic diagrammatic construction [ADC(3)] Green function method with the 6-311++G** and 6-311G** basis sets, respectively. Eighteen possible conformers of alfa-alanine and its charged states have been optimized, employing density functional theory (B3LYP) with 6-311++G** and 6-311G** basis sets, respectively. In the gas phase, the IPs of all alfa-alanine calculated have positive values and all the EAs are negative, except for VEA2 (+0.555 eV) of 6A, which indicates that all anions except for 6A- are unstable with respect to electron autodetachment vertically and adiabatically. All kinds of chemical quantities, associated with the IP and EA, such as electronegativity, chemical potential, chemical hardness, and chemical softness, have also been determined. Finally, we also report the infrared spectrum frequencies and vibrational modes for neutral states of alfa-alanine 1A, 2A, 3A, 5A and their optimized cationic and anionic states in seven highest frequency regions, and analyzed the relationship between the vibrational frequencies when receiving or donating an electron.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
471--481
Opis fizyczny
Bibliogr. 24 poz.
Bibliografia
- 1. Csaszar A.G., J. Mol. Struct., 346, 141 (1995).
- 2. Csaszar A.G., J. Phys. Chem., 100, 3541 (1996).
- 3. Lijinma K. and Beagley B., J. Mol Struct., 248, 133 (1991).
- 4. Destro R., Marsh R.E. and Bianchi R., J. Phys. Chem., 92, 966 (1988).
- 5. Godfrey P.D., Firth S., Hatherley L.D., Brown R.D. and Pierlot A.P., J. Am. Chem. Soc., 115, 9687 (1993).
- 6. Frey R.F., Coffm J., Newton S.Q., Ramek M., Cheng Y.K.W., Momany F.A. and Schafer L., J. Am.Chem. Soc., 114, 5369 (1992).
- 7. Gronert S. and O'Hair R.A.J., J. Am. Chem. Soc., 117, 2071 (1995).
- 8. Pecul M., Ruud K., Rizzo A. and Helgaker T., J. Phys. Chem. A., 108, 4269 (2004).
- 9. Close D.M., J. Phys. Chem. A., 108, 10376 (2004).
- 10. Gino A.D., Derek A.P. and James S.W., J. Org. Chem., 65, 2195 (2000).
- 11. Evangelista F.A., Paul A. and Schaefer H.F. III, J. Phys. Chem. A., 108, 3565 (2004).
- 12. Chen E.S.D., Chen E.C.M., Sane N. and Shulze S., Bioelectrochem. Bioenergetics, 48, 69 (1999).
- 13. Periquet V., Moreau A., Carles S., Schermann J.P. and Desfrancois C., J. Electron Spectrosc. Relat. Phenom., 106, 141 (2000).
- 14. Rienstra-Kiracofe J.C., Tschumper G.S., Schaefer H.F. III, Nandi S. and Ellison G.B., Chem. Rev., 102, 231(2002).
- 15. Klasinc L., Debies T.P. and Rabalais J.W., NIST Chemistry WebBook. NIST Standard Reference Data-base, Number 69, March, 2003. National Institute of Standards and Technology. Gaithersburg, MD.20899. (http://webbook.nist.gov/chemistry/).
- 16. Wesolowski S.S., Leininger M.L., Pentchev P.N. and Schaefer H.F. III, J. Am. Chem. Soc., 123, 4023 (2001).
- 17. Bourcier S. and Hoppilliard Y., Int. J. Mass Spectrom., 217, 231 (2002).
- 18. Zhan C.G., Nichols J.A. and Dixon D.A., J. Phys. Chem. A., 107, 4184 (2003).
- 19. Schirmer J., Cederbaum L.S. and Walter O., Phys. Rev. A., 28, 1237 (1983).
- 20. Niessen W. von, Schirmer J. and Cederbaum L.S., Comput. Phys. Rep., l, 57 (1984).
- 21. Cederbaum L.S., Domcke W., Schirmer J. and Niessen W. von., Chem. Phys., 65, 115 (1986).
- 22. Parr R.G. and Pearson R.G., J. Am. Chem. Soc., 105, 7512 (1983).
- 23. Mulliken R.S., J. Chem. Phys., 2, 782 (1934).
- 24. Yang W. and Parr R.G., Proc. Natl. Acad. Sci. U.S.A., 82, 6723 (1985).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0006-0045