PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

VLE in (C6H14 + C16H34) Mixture. Prediction with Elbro Free Volume Method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of thisworkwas a search for the dependence of VLE prediction quality on the kind of chosen n-alkanemodel system. The activities and total vapour pressure for (n-C6H14 + n-C16H34) mixture at 293.15 K, 313.15 K and 333.15 K were successfully predicted with Elbro free volume method using three sets of UNIQUAC Aij interaction parameters: (1) Aij obtained with the semi-empirical quantum mechanical method AM1 (Austin Model 1) for (n-C6H14 + n-C16H34) system, (2) Aij adjusted to (n-C6H14 + n-C16H34) VLE experimental data, (3) Aij obtained with the CFF (Consistent Force Field) method for the chosen (n-alkane + n-alkane) model system. The predicted curves were compared with experimental data. It has been found that when sizes of the solvent molecule and a chosen segment in the second long chain molecule are comparable to the model system size then the UNIQUAC interaction parameters obtained with molecular mechanics quantitatively describe the real intermolecular forces in n-hexane + n-hexadecane system.
Rocznik
Strony
107--116
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • The Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
Bibliografia
  • 1. Mc Glashan M.I. and Williamson A.G., Trans. Faraday Soc., 57, 588 (1961).
  • 2. Hildebrand H.J., J. Chem. Phys., 43, 109 (1939).
  • 3 Hildebrand H.J. and Sweny J.W, J. Phys. Chem., 43, 297 (1939).
  • 4. Maczynski A., Thermodynamical Data for Technology Verified Vapour-Liquid Equilibrium Data, PWN, Warszawa, vol. l, p. 131 (1976).
  • 5. Shen Weiguo, Ań Xue Qin, McElroy P.J. and Williamson A.G., J. Chem. Thermodyn., 22,905 (l 990).
  • 6.  Kioupis L.I and Maginn EJ., Chem. Eng. J., 74, 129 (1999).
  • 7.  Fredenslund A., Gmehling J., Michelsen M.L., Rasmussen P. and Prausnitz J.M., Ind. Egn. Chem. Process Des. Dev., 16, 450 (1977).
  • 8. Abrams D.S. and Prausnitz J.M., AIChE Journal, 21, 116 (1975).
  • 9. Elbro H.S., Fredenslund Aa. and Rasmussen P., Macromolecules, 23, 4707 (1990).
  • 10. Jónsdöttir S.Ösk, Rasmussen K J. and Fredenslund Aa., Fluid Phase Eąuilibria, 100, 121 (1994).
  • 11. Jónsdöttir S.Ösk, Klein R. A. and Rasmussen K J., Fluid Phase Equilibria, 115, 59 (1996).
  • 12. Jónsdöttir S.Ösk, Rasmussen K J.., Rasmussen P. and Welsh W.J., Computational and Theoretical Polymer Science, 8 (1-2), 75 (1998).
  • 13. Bondi A., Physical Properties of Crystals, Liquids and Glasses, Wiley, New York (1968).
  • 14. Fredenslund Aa. and Sorensen J.M., In: Sandler S.I. (ed.) Models for Thermodynamics and Phase Equilibria Calculations, Marcel Dekker, New York, pp. 287-361 (1994).
  • 15. Rasmussen K J.., Engelsen S.B., Fabricuis J. and Rasmussen P, The ConsistentForce Field: Development of Potential Energy Functions for Conformational Analysis. In: R. Fausto (Editor), Recent Experimental and Computational Advances in Molecular Spectroscopy, NATO ASI Ser. C, Vol. 406. Kluwer, Dordrecht, pp. 381-419 (1993).
  • 16. HyperChem 7.0 for Windows, Hypercube, Inc. 2002.
  • 17. SPECS 3.0 (Center for Phase Equilibria and Separation Processes at the Technical University of Denmark in Lyngby (IVC-SEP)).
  • 18. Daubert T.E. and Danner R.P., Physical and Thermodynamic Properties of Pure Compounds: Data Compilation, Hemisphere, New York (1989).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0006-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.