PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Systemy wieloagentowe jako narzędzie do symulacji systemów złożonych

Autorzy
Identyfikatory
Warianty tytułu
EN
Multi-agent systems as a tool for complex systems simulations
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono podstawowe informacje dotyczące systemów wieloagentowych: definicje, klasyfikacje i zastosowania. Omówiono rodzaje interakcji pomiędzy jednostkami systemu wieloagentowego oraz sposoby komunikacji. Opisano wykorzystanie systemu wieloagentowego jako narzędzia do komputerowych symulacji systemów złożonych. Przedstawiono przykłady wieloagentowych symulacji powstawania samoorganizacji w tych systemach.
EN
This paper presents basie information about multi-agent systems: defi-, classifications and applications. Interaction rypes amongst entities of a multi-t system and communication methods arę discussed. Multi-agent system as a tool |fer computer simulation of complex systems is described. Multi-agent simulation ex-i of emerging self-organizations in these systems arę presented.
Czasopismo
Rocznik
Strony
15--28
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
Bibliografia
  • Bahceci E., Soysal O., Sahin., Erol.: A Review: pattern formation and adaptation in multi-robot systems. Tech. report CMU-RI-TR-03-43, Robotics Institute, Carnegie Mellon Uni-versity, October, 2003.
  • Balch T., Arkin R. C.: Communication in reactive multiagent robotic systems. Autono-mous Robots 1995, Vol. 1(1), s.1-25.
  • Balch T., CMU's MultiRobot Lab: TeamBots Project, http://www.teambots.org.
  • Coveney P., Highfield R.: Granice złożoności: poszukiwania porządku w chaotycznym świecie. Prószyński i S-ka, Warszawa, 1997.
  • Deneubourg J. L., Goss S., Franks N., Sendova-Franks A., Detrain C., Chretien L.: The dynamics of collective sorting: robot-like ants and ant-like robots. Proceedings of the first international conference on simulation of adaptive behavior on From animals to animats, Paris, 1991, s. 356-365.
  • Drogoul A., Ferber J.: From Tom thumb to the dockers: Some experiments with foraging robots. In Proc. Simulation of Adaptive Behavior, 1993.
  • Ferber J.: Multi-agent systems. An introduction to distributed artificial intelligence. Addi-son–Wesley, USA, New York, 1999.
  • Giunchiglia F., Odell J., Odell G., Weiss G.: Agent-oriented software engineering III. Lec-ture Notes in Computer Science, Springer-Verlag, 2003.,Volume 2585.
  • Kaelbling L. P., Littman M. L., Moore A.W.: Reinforcement learning: a survey. Journal of Artificial Intelligence Research, 1996, s. 237-285.
  • Kanade P. M, Hall L. O.: Fuzzy ants as a clustering concept. 22nd international confer-ence of the North American fuzzy information processing society NAFIPS, 2003, s. 227-232.
  • Kawamura H., Ohuchi A.: Evolutionary emergence of collective intelligence with artifi-cial pheromone communication. Proceedings of IECON-2000, Nagoya, Japan, 2000, s. 2831-2836.
  • Kitano H., Kuniyoshi Y., Noda I., Asada M., Matsabura H., Osawa E.: Robocup: A chal-lange problem for AI. AI Magazine, 1997, Vol. 18(1), s. 73-85.
  • Kube C. R., Zhang H.: Collective robotics: from social insects to robots. Adaptive Behav-iour, 1993, Vol. 2(2), s.189-219.
  • Liu J., Jing H., Tang Y. Y.: Multi-agent oriented constraint satisfaction. Artificial Intelli-gence, 2002, Vol. 136, issue 1, s. 101-144.
  • Mackworth A. K., Sahota K.: Can situated robots play soccer? Proc. Artificial Intelligence ‘94, Banff, AB, 1994, s. 249-254.
  • Marida D., Cannataro M., Fabregat R.: Supporting an adaptive hypermedia system through a multiagent system (MAS-AHS). IIiA Research report, ref. IIiA 04-03-RR, Insti-tut d'Informatica i Aplicacions, University of Girona, 2003.
  • Matarić M.: Designing and understanding adaptive group behavior. Adaptive Behavior, 1995, Vol. 4(1), s. 51-80.
  • Minar N., Burkhart R., Langton C., and Askenazi M.: The swarm simulation system. A toolkit for building multi-Agent simulations. Technical report, Swarm Development Group, June 1996, http://www.swarm.org.
  • Murciano A., Millan J., Zamora J.: Specialization in multi-agent systems through learning. Biological Cybernetics, 1997, No 76, s. 375-382.
  • Parunak H., Brueckner S. A.: Engineering swarming systems. Methodologies and soft-ware engineering for agent systems. Kluwer, 2004.
  • Parunak. H.: Go to the ant. Engineering principles from natural agent systems. Annals of Operations Research, 1997, No. 75, s. 69-101.
  • Peddireddy T., Vidal J. M.: A prototype multiagent network security system. In Proceed-ings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, 2003, s. 1094-1095.
  • Pollack Hanks N. E., Cohen S. R., Cohen P. R.: Benchmarks, testbeds, controlled experi-mentation and the design of agent architectures. AI Magazine, 1993, Vol. 14(4), s. 17-42.
  • Russel S. J., Norvig P.: Artificial intelligence. A modern approach. Prentice Hall, 1995.
  • Sahin E., Labella T. H., Trianni V., Deneubourg J. L., Rasse P., Floreano D., Gambardella L., Mondada F., Nolfi S., Dorigo M.: SWARM–BOT: Pattern formation in a swarm of self-assembling mobile robots. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, 2002.
  • Schillo M., Fley B., Florian M., Hillebrandt, F., Hinck D.: Self-organization in multiagent systems. In Proceedings of the Third International Workshop on Modelling Artificial So-cieties and Hybrid Organizations (MASHO), 2002.
  • Singh G. B.: Intelligent agent architecture and applications. U.S. Army Vetronics Institute 2nd Annual Workshop Series, 2002.
  • Stone P., Veloso M.: Multiagent systems: A survey from machine learning perspective. Autonomous Robots, 1997, Vol. 8, No.3, s. 345–383.
  • Sukthankar G., Sycara K.: Team-aware robotic demining agents for military simulation. http://www-2.cs.cmu.edu/~softagents/iaai00/iaai00.html.
  • Szarowicz A., Amiguet-Vercher J., Forte P.: Multiagent interaction for crowd scene simu-lation. Workshop on Autonomy Delegation and Control Interacting with Autonomous Agents – International Joint Conference on Artificial Intelligence IJCAI-01, August 4-10, Seattle, USA, 2001.
  • Takahashi H., Terano T.: Agent-Based approach to investors' behavior and asset price fluctuation in financial markets. Journal of Artificial Societies and Social Simulation 2003, Vol. 6, No. 3
  • Terna P.: Simulation tools for social scientists: Building agent based models with SWARM. Journal of Artificial Societies and Social Simulation, 1998, Vol. 1, No. 2.
  • Vilo P., Marzo J. L.: Using a multi-agent system for network management. Lluís Fabrega, CCIA 2002, Congres Catala de Inteliligencia Artificial, Castella de la Plana, Spain, Octo-ber 24-25, 2002.
  • Weiss G.: Multi-Agent Systems. An introduction to distributed artificial intelligence. Ad-dison Wesley, Longman, 1999.
  • Younger S. M.: Discrete agent simulations of the effect of simple social structures on the benefits of resource sharing. Journal of Artificial Societies and Social Simulation 2003, Vol. 6, No. 3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0004-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.