PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complexes of Adenine with Metal Ions: Stability and Excited States

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Molecular geometry optimizations and excited state energy calculations were performed for the N9H and N7H tautomers of adenine (Ade) and their complexes with selected transition metal ions (Cu+, Cu2+, Zn2+ and Ag+). The ground state geometry optimizations were carried out at the HF and UHF (for open-shell metal ions) levels, while transition energies were calculated using the configuration interaction involving single excited configurations (CIS method). Single point ground state energy calculations were also performed at the full MP2 (UMP2 for open-shell systems) level. The 6-31+G(d,p) basis set was used for all but Ag+ containing complexes for which the LANL2DZ basis set was used. Experimental UV-spectra of adenine complexes with Cu2+ and Ag+ metal cations in the water solution were also obtained. These spectra show red-shift of approximately 1000 cm-1 in comparison with that of the adenine. The analysis of the first electronic singlet - * transition energies suggests that metal ion binding to the N1 or N7 atomic sites of adenine generally leads to the red-shift, while the binding at the N9 site leads to blue shift of the absorption maximum of complexes. The most probable binding site for the Cu+ and Zn2+ ions is found to be the N7 atomic site of the N9H tautomer of adenine. Divalent copper Cu2+ ion would bind at the N1 site. Co-existence of the two forms of adenine complexes with silver ion ([N9H-Ade-AgN1]+, and [N9H-Ade-AgN7]+) is also revealed.
Słowa kluczowe
Rocznik
Strony
1873--1882
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Molecular Biophysics Department, Institute for Low Temperature Physics and Engineering, National Academy of Science, Kharkov, 61164, Ukraine
  • Computational Center for Molecular Structure and Interactions, Jackson State University, Jackson, Mississippi, 39217, USA
autor
  • Molecular Biophysics Department, Institute for Low Temperature Physics and Engineering, National Academy of Science, Kharkov, 61164, Ukraine
autor
  • Molecular Biophysics Department, Institute for Low Temperature Physics and Engineering, National Academy of Science, Kharkov, 61164, Ukraine
autor
  • Computational Center for Molecular Structure and Interactions, Jackson State University, Jackson, Mississippi, 39217, USA
  • Computational Center for Molecular Structure and Interactions, Jackson State University, Jackson, Mississippi, 39217, USA
  • Molecular Biophysics Department, Institute for Low Temperature Physics and Engineering, National Academy of Science, Kharkov, 61164, Ukraine
Bibliografia
  • 1.Saenger W., Principles of Nucleic Acid Structure. Springer-Verlag, New York- Berlin-Heidelberg- Tokyo, 1984.
  • 2.(a) Leszczynski J., Advances in Molecular Structure and Research, Hargittai M. and Hargittai I. (eds.), JAI Press Inc., Stamford, Connecticut, 6,209 (2000); (b) Shukla M.K. and Leszczynski J., in Computational Chemistry: Reviews of Current Trends, Leszczynski J. (ed.) World Scientific, Singapore, 8, 249 (2003).
  • 3.Stewart R.F. and Jensen L.H., J. Chem. Phys., 40, 2071 (1964).
  • 4.Nowak M.J., Lapinski L., Kwiatkowski J.S. and Leszczynski J., Spectrochim. Acta, 47A, 87 (1991).
  • 5.Mishra S.K., Shukla M.K. and Mishra P.C., Spectrochim. Ada, 56A, 1355 (2000).
  • 6.Borodavkin A.V., Budovskiy E.I., Morozov Yu.V., Savin RA. and Simukova N.A., Molecular Biolog)’, Electronic Structure, UV Absorption Spectra and Reactivity of the Nucleic Acid Components, VINITI, Moscow, 1977 (in Russian).
  • 7.Dreyfus M., Dodin G., Bensaude O. and Dubois J.E., J. Am. Chem. Soc., 97, 2369 (1975).
  • 8.Morozov Yu.P. and Bazgulina N.P., Electronic Structure, Spectroscopy and Reactivity of Molecules, Nauka, Moscow', 1989 (in Russian).
  • 9.Morozov Yu.P., Bazgulina N., Bokovoy W. and Chehov W., Biophysics, 32, 699 (1987) (in Russian).
  • 10.Mezey P.G., Ladik J.J. and Barry M., Theor. Chim. Ada, 54, 251 (1980).
  • 11.Rubin Yu.V., Rubina A.Yu. and Sorokin V.A., Biophysical Bulletin, 1, 50 (1998) (in Russian).
  • 12.Blagoi Yu.P., Galkin V.L., Gladchenko G.O., Kornilova S.V., Sorokin V.A. and Shkorbatov A.G., Metal Complexes of Nucleic Acids in Solutions, Naukova dumka, Kiev, 1991 (in Russian).
  • 13.Speca A.N., MikulskiC.M., laconianni F.J., Pytlewski L.L. and KarayannisN.M., J. Inorg. Nucl. Clwm., 43,2771 (1981).
  • 14.Davydova S.L., in Metal Ions in Biological Systems, Sigel H., (ed.), Marccl Dekker, Inc., New York, 8, 183(1979).
  • 15.Mortland M. and Lawless J., Clays Clay Miner., 31,435 (1983); ibid, 32, 279 (1984).
  • 16.Lailach G., Thompson T. and Brindley G., Clays Clay Miner., 16, 285 (1968); ibid 16, 295 (1968).
  • 17.Weckhuysen B.M., Leeman H. and Schoonheydt R.A., Phys. Chem. Chem. Phys., 1, 2875 (1999).
  • 18.Sorokin V.A., Blagoi Yu.P., Valeev V.A. and Antonova O.A., Preprint 25-83 FTINTAN USSR, Kharkov, 1983 (in Russian).
  • 19.Sorokin V.A., Biophysics, 39, 993 (1994) (in Russian).
  • 20.Sorokin V.A., Valeev V.A., Gladchenko G.O., Sysa I.V., Degtyar M.V., Blagoi Yu.P. and Volchok I.V., Biophysics, 44, 210 (1999) (in Russian).
  • 21.Terzis A., Beauchamp A.L. and Rivest R., Inorg. Chem., 12, 1166(1973).
  • 22.de Meester P., Goodgame D.M.L., Price K.A. and Skąpski A.C., Nature, 229, 191 (1971).
  • 23.Gagnon C. and Beauchamp A.L., Ada Cryst., B33, 1448 (1977).
  • 24.Sheina G.G., Radchenko E.D., Plohotnichenko A.M. and Blagoj Yu.P., Biophysics, 27, 983 (1982) (in Russian).
  • 25.Pullman B., Pullman A. and Berthod H., Int. J. Quantum Chem. Quantum Biol. Symp., 5, 79 (1978).
  • 26.Burda J.V., Sponer J.and Hobza P., J. Phys. Chem., 100,7250(1996).
  • 27. Foresman J.B., Head-Gordon M., Pople J.A. and Frisch M.J., J. Phys. Client., 96, 135 (1992).
  • 28.Scott A. and Radom L., J. Phys. Chem., 100, 16502(1996).
  • 29.Frisch M.J., Trucks G.W., Schlegel H.B., ScuseriaG.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G. Montgomery J.A. Jr., Stratmann R.E., Burant J.C., DapprichS., Millam J.M., Daniels A.D., Kudin K.N. Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C. Clifford S., Ochterski J., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D. Raghavaehari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul A.G., Stefanov B.B., Liu G. Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T., Al-L.aham M.A. Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B., Chen W., Woni M.W., Andres J.L., Gonzalez C., Head-Gordon M., Replogle E.S., Pople J.A., Gaussian 98. Revisioi A.7; Gaussian: Pittsburgh, PA, 1998.
  • 30.Radchenko E.D., Plohomichenko A M., Sheina G.G. and Blagoj Yu.P., Biophysics, 29, 553 (1984) (ii Russian).
  • 31.Gueron M., Eisinger J., and Shulnian R.G.,.J. Chem. Phys., 47, 4077 (1967).
  • 32.Montenay-Garestier T. and Helene C., J. Chim. Phys., 70, 1384 (1973).
  • 33.Rodgers M.T. and Armentrout P.B., J. Am. Chem. Soc., 122, 8548 (2000).
  • 34.Sponer J., Sabat M., Gorb L., Leszczyński J., Lippert B. and l lobza P., J. Phys. Chem. B, 104, 753 (2000).
  • 35.Cochran W., Ada Ciyst.,4,81 (1951).
  • 36.Wang S.M. and Li N.C., J. Am. Chem. Soc., 90, 5069 (1968).
  • 37.Marzilli L.G., de Castro B., CaradonnaJ.P., Stewart R.C. and Van Vuuren C.P.,.J. Am. Chem. Soc., 102 916(1980).
  • 38.Shimokawa S., Fukui H., Sohma J. and Hotta K., J. Am. Chem. Soc., 95, 1777 (1973).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0003-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.