PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Thermodynamics and Kinetics of Point Defects in Nonstoichiometric Nickel Oxide

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Department of Solid State Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland (Received October 4th, 2004; revised manuscript November 19th, 2004) The deviation from stoichiometry and chemical diffusion in metal-deficient nickel oxide have been studied as a function of temperature (1073-1673 K) and oxygen pressure (10-105 Pa), using microthermogravimetric techniques. It has been found that the nonstoichiometry, y, inNi1-yOis the following function of temperature and equilibrium oxygen pressure: y = 0.153.pO1/6 2 .exp (80kJ/mol RT) , clearly indicating that the predominant defects in this oxide are non-interacting, doubly ionised cation vacancies and electron holes randomly distributed in the crystal lattice. Re-equilibration rate measurements of nonstoichiometry have shown that the vacancy diffusion coefficient, DV, being the direct measure of defect mobility, does not depend on their concentration and is the following function of temperature: DV = 0.062.exp(-152kJ/mol RT) . Using both these results the self-diffusion coefficient of cations,DNi, inNi1-yOhas been calculated as a function of T and p(O2): DNi = 9.49.10-3.pO 1/6 2 .exp ( - 232kJ/mol RT) , being in excellent agreement with experimental results obtained on single crystalline material.
Słowa kluczowe
Rocznik
Strony
907--917
Opis fizyczny
Bibliogr. 16 poz. rys.
Twórcy
autor
  • Department of Solid State Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Department of Solid State Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1.Perkins R.A. and Rapp R.A., Metallurgical Trans., 4, 193 (1973).
  • 2.Kofstad P., High Temperature Corrosion, Elsevier Applied Science, London and NY, 1988, p. 212.
  • 3.Wagner J.B., “Chemical Diffusion in Nonstoichiometric Compounds” in: Mass Transport in Nonmetallic Solids, Proc. Brit. Ceram. Soc., 19, 29 (1971).
  • 4.Mrowec S. and Hashimoto K., J. Mater. Sci., 30, 4801 (1995).
  • 5.Mrowec S. and Grzesik Z., J. Phys. Chem. Solids, 64, 1387 (2003).
  • 6.Mrowec S., Grzesik Z. and Dabek J., High Temp. Materials and Processes, 21, 87 (2002).
  • 7.Kofstad P., High Temperature Corrosion, Elsevier Applied Science, London and NY, 1988, p. 172.
  • 8.Mrowec S., An Introduction to the Theory of Metal Oxidation, National Bureau of Standards and Na¬tional Science Foundation, Washington D. C., 1982, p. 172.
  • 9.Kruger F., The Chemistry of Imperfect Crystals, North-Holland, Amsterdam, 1964.
  • 10.Mrowec S. and Grzesik Z., J. Phys. Chem. Solids, 65, 1651 (2004).
  • 11.Mrowec S. and Janowski J., Similarities and Differences in Defect Dependent Properties of Transition Metal Sulphides and Oxides, in: Selected Topics in High Temperature Chemistry. Defect Chemistry of Solids. Eds. O. Johannesen and A.G. Andersen, Elsevier, Amsterdam-Oxford-NY, 1989, p. 55.
  • 12.Kofstad P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, J. Wiley-Interscience, NY-London-Sydney-Toronto, 1972.
  • 13.Mrowec S., Defects and Diffusion in Solids, Elsevier, Amsterdam-Oxford-NY, 1980, p. 174.
  • 14.O’Keefe M. and Moore W.J., J. Chem. Phys., 36, 3009 (1962).
  • 15.Volpe M. and Reddy J., J. Chem. Phys., 53, 1117 (1970).
  • 16.Atkinson A. and Taylor R.I., Phil. Mag. A, 39, 581 (1979).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0002-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.