PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mechanistic and Kinetic Study of Free Radical Polymerization Photoinitiated by Xanthene Dye-n-Phenylglycine Derivatives Photoredox Pairs

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanistic and free radical photopolymerization kinetic studies for the selected xanthene dyes in the presence of N-phenylglycine derivatives are described. The examined transient phenomena, using nanosecond laser flash photolysis, confirm that the oxidation of N-phenylglycine derivatives is a one electron transfer process. The laser flash measurements as well as the steady-state experiments allowed to establish the structure of a free radical, which in ethyl acetate-DMF (9:1) solution, is mostly formed after the electron transfer, e.g. N-phenylglycine _-aminoalkyl radical (Ph-NH-C _ (H)-COOH). However, a careful analysis of the photolysis products indicates another path of secondary reactions that includes the decarboxylation of N-phenylglycine N-centered radical cation, yielding Ph-NH-CH2 radical. The measured electron transfer rates oscillate from 0.23_108 to 35.9_108M-1 s-1 that, in turn, suggests the possibility that the electron transfer process might control the rate of photoinitiated polymerization. The comparison of the rates of xanthene dye triplet state quenching and the measured rates of polymerization shows, however, that there is no correlation between these two variables. This observation permits to conclude that the rate of photopolymerization is probably controlled by the secondary processes such as: (i) the rate of proton transfer reaction between N-phenylglycine radical cation and xanthene dye radical anion, (ii) the participation of decarboxylation process in the secondary reactions and (iii) the reactivity of the free radicals obtained after electron transfer.
Rocznik
Strony
851--866
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
autor
  • University of Technology and Agriculture, Faculty of Chemical Technology and Engineering Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • University of Technology and Agriculture, Faculty of Chemical Technology and Engineering Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • University of Technology and Agriculture, Faculty of Chemical Technology and Engineering Seminaryjna 3, 85-326 Bydgoszcz, Poland
  • University of Technology and Agriculture, Faculty of Chemical Technology and Engineering Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1.Oster G., Nature, 173, 300(1954).
  • 2.Chatterjee S., Gottschalk P., Davis P.D. and Schuster G.B., J Am. Chem. Soc., 110, 2326 (1988).
  • 3.Chatterjee S., Davis P.D., Gottschalk P., Kurz B., Yang X. and Schuster G.B., J. Am. Chem. Soc., 112, 6329(1990).
  • 4.Kabatc J., Pietrzak M. and P^czkowski J., Macromolecules, 31, 4651 (1998).
  • 5.Kabatc J., J?drzejewska B. and Pqczkowski J., J. Polym. Sci: Part A: Polym. Chem., 38, 2365 (2000).
  • 6.Kabatc J., Kucybata Z., Pietrzak M., 6cigalski F. and Pqczkowski J., Polymer, 40, 735 (1999).
  • 7.Valdes-Aquilera O., Pathak C.P., Shi J., Watson D. and Ncckers D.C., Macromolecules, 25,541 (1992).
  • 8.Zhang X.P. and Neckers D.C., J. Org. Chem., 58, 2614 (1993).
  • 9.Tanabe T., Torres-Filho A. and Neckers D.C,,J. Polym. Sci: Part A: Polym. Chem., 33, 1691 (1995).
  • 10.Polykarpov A.Y., Hassoon S. and Neckers D.C., Macromolecules, 29, 8274 (1996).
  • 11.Kucybala Z., Pietrzak M. and P^czkowski J., Chem. Mater., 10, 3555 (1998).
  • 12.Pączkowski J. and Neckers D.C., In Electron Transfer in Chemistry, Balzani V. (ed.), Weinheim, 2001; 5,516-586.
  • 13.Wrzyszczyński A., Filipiak P., Hug G.L., Marciniak B. and Pączkowski J., Macromolecules, 33, 1577 (2000).
  • 14.Andrzejewska E., Hug G.L., Andrzejewski M. and Marciniak B., Macromolecules, 32, 2173 (1999).
  • 15.Hassoon S. and Neckers D.C., J. Phys. Chem., 99, 9416 (1995).
  • 16.Wrzyszczyński A., Pietrzak M. and P^czkowki J., Macromolecules, 37, 41 (2004).
  • 17.Shi I., Zhang X. and Neckers D.C., J. Org. Chem., 57, 4418 (1992).
  • 18.Zhang X. and Neckers D.C., J. Org. Chem., 58, 2614(1993).
  • 19.Shi J., Zhang X. and Neckers D.C., Tetrahedron Lett., 34, 6013 (1993).
  • 20.Pączkowski J., Pietrzak M. and Kucybata Z., Macromolecules, 29, 5057 (1996).
  • 21.Pączkowski J. and Kucybata Z., Macromolecules, 28, 269 (1995).
  • 22.Rodgers M.A.J., In Primary Photo-Processes in Biology and Medicine, Bensasson R., Lorri V., Truscott G, Plenum T.G (eds), New York, 1985; 1-23.
  • 23.Davidson R.S. and Steiner P.R., J. Chem. Soc. (C), 1682 (1971).
  • 24.Davidson R.S., Harrison P.R. and Steiner P.R., J. Chem. Soc. (C), 3480 (1971).
  • 25.Barthomolew D.R., Brimage G and Davidson R.S., J. Chem. Soc. (C), 3482 (1971).
  • 26.Klimtchuk E., Rodgers M.A.J. and Neckers D.C., J. Phys. Chem., 96, 9817 (1992).
  • 27.Kasche V. and Lindqvist L„ J. Phys. Chem., 68, 817 (1964).
  • 28.Kasche V. and Lindqvist L., Photochem. Photobiol., 4, 923 (1965).
  • 29.Wintgens V., Scaiano J.C., Linden S.M. and Neckers D.C., J. Org. Chem., 54, 5242 (1989).
  • 30.Bourget D. and Fouassier J.P., J. Chem. Soc., Faraday Trans., 94, 1849 (1998).
  • 31.Canle M.L., Santaball J.A. and Steeken S., Chem. Eur. J., 5, 1192 (1999).
  • 32.Yoon U.G., Marino P.S., Givens B. W. and Atwater B. Ill, In Advances in Electron Transfer Chemistry, JAI Press, 1994; 4, 117-205.
  • 33.Bobrowski K., Marciniak B. and Hug GL., J. Am. Chem. Soc., 114, 10279 (1992).
  • 34.Marciniak B., Bobrowski K. and Hug G.L., J. Phys. Chem., 97, 11937 (1993).
  • 35.Marciniak B., Bobrowski K, Hug G.L. and Rozwadowski J., J. Phys. Chem., 98, 4854 (1994).
  • 36.Marciniak B., Hug G.L., Rozwadowski J. and Bobrowski K,, J. Am. Chem. Soc., 117, 127 (1995).
  • 37.Eberson L., In Electron Transfer Reactions In Organic Chemistry, Springer-Verlag: Berlin, 1987.
  • 38.Barthomolew D.R. and Davidson R.S., J. Chem Soc. (C), 2342 (1971).
  • 39.Brimage D.R.G., Davidson R.S. and Steiner P.R., J. Chem. Soc. Perkin Trans. 1, 526 (1973).
  • 40.Neveux M., Bruneau C. and Dixneuf P.H., J Chem. Soc. Perkin Trans. 1, 1197 (1991).
  • 41.Ishi Y., Takeno M., Kawasaki Y., Muromaehi A., Nishiyama Y. and Sakaguchi S., J. Org. Chem., 61,3088(1996).
  • 42.Zakrzewski A. and Neckcrs D.C., Tetrahedron, 47, 4507 (1987).
  • 43.Nishimoto S.I., Tada H. and Kagiya T., J. Chem. Soc. Perkin Trans. 2, 873 (1983).
  • 44.Patterson J.M., Shiue C.Y. and Smith W.T. Jr., J. Org. Chem., 38, 2447 (1973).
  • 45.Barluenga J., Bayon A.M., Campos P.J., Canal G., Asensio G. and Gonzalez-Nunez E., Chem. Ber., 121, 1813(1988).
  • 46.Phylips K. and Read G., J. Chem. Soc. Perkin Trans. 1, 671 (1986).
  • 47.Hassonn S. and Neckcrs D.C., J. Phys. Chem., 99, 9416 (1995).
  • 48.Ikeda S., Murata S., Ishii K. and Hamaguchi H., Chem. Lett., 1009 (1999).
  • 49.Ikeda S., Murata S., Ishii K. and Hamaguchi H., Bull. Chem. Soc. Jpn., 73, 2783 (2000).
  • 50.Ikeda S. and Murata S., J. Photochem. Photobiol. A: Chem., 149, 121 (2002).
  • 51.Marcus R.A., J. Chem. Phys., 24, 966 (1956).
  • 52.Marcus R.A., J. Phys. Chem., 67, 853 (1963).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0002-0095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.