PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

New Strategies Towards Synthesis of Doxorubicin Analogs

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of the new drug candidates in the anthracycline class of antitumor antibiotics are a result of synthetic efforts involving modification of both the aglycone and sugar moieties. In such an approach, formation of a glycosidic bond is an important step that often becomes a limiting factor in the preparation of certain target structures and can also affect the efficiency of synthetic processes for obtaining analogs of anthracycline antibiotics of clinical interest. We have developed a general approach to de novo glycosylation of anthracycline aglycones leading to doxorubicin analogs with L-lyxo- and L-arabinomonosaccharides. Such glycosylation procedures are also effective in preparation of daunorubicin congeners. Specifically, we have explored the use of 1-O-silylated 3-azido-2,3,6-trideoxy-hexopyranoses as stable glycosyl donors and have successfully demonstrated the practical use of the 3-azido group to generate an amino function during the last steps of synthesis to allow easy generation of doxorubicin analogs.We have also shown that other known glycosyl donors can be conveniently generated from 1-O-silylated-hexopyranoses and can be used effectively to take advantage of a particular glycosidation and deprotection strategy.We describe two standard glycosylation procedures that were designed to attain the desired level of alfa-glycoside stereoselectivity and overall efficiency. Different glycosylation procedures were selected depending on the sugar synthon configuration and sensitive C-14 substitution in the target anthracycline aglycone. These achievements are exemplified by the use of previously unreported 3-azidosugar synthons of L-lyxo- and L-arabino- configuration protected by a 4-O-chloroacetyl group or an acid-labile triethylsilyl (TES) protecting group.
Rocznik
Strony
349--359
Opis fizyczny
Bibliogr. poz. 23, rys.
Twórcy
autor
autor
autor
autor
Bibliografia
  • 1. DeVita V.T. Jr, Hellman S. and Rosenberg S.A., Cancer Principles and Practice of Oncology, 6th Edition, Lippincott-Raven Publishers, Philadelphia, 2000.
  • 2. Perry M.C. (Ed.), The Chemotherapy Source Book, 2nd Edition, Williams & Wilkins, Baltimore, 1996.
  • 3.Booser D.J., Esteva F.J., Rivera E., Valero V., Esparza-Guerra L., Priebe W. and Hortobagyi G.N., Cancer Chemother: PharmacoI., 50, 6 (2002).
  • 4. Faderl S., Estrov Z., Kantaijian H.M., Harris D., Van Q., Fokt I., Woynarowski J.M. and Priebe W., Anticancer Res., 21, 3777 (2001).
  • 5.Priebe W., Fokt 1., Pmewloka T., Krawczyk M., Skibicki P., Grynkiewicz G. and Perez-Soler R., Methods and compositions for the manufacture of C-3’ and C-4’ anthracycline antibiotics. U.S. Patent 6,673,903, Jan. 04, 2004.
  • 6. Priebe W., Fokt I., Przewloka T., Woynarowski J .M., Pratesi G., Supine R., Zunino F., Ling Y.-H. and Perez-Soler R., WP769, a novel orally active mechanistically altered doxorubicin analog, Proc. 11th NCI-EORTC-AACR Symposium on New Drugs in Cancer Iherapy; Nov. 07-10, 2000, Amsterdam, The Netherlands.
  • 7. Priebe W., Chaires J.B., Przewloka T., F okt I. and Perez-Soler, R., Bis-Anthracyclines with high activity against doxorubicin resistant tumors. U.S. Patent 5,874,412, February 23, 1999.
  • 8. Priebe W., Grynkiewicz G. and Neamati N., Tetrahedron Lett., 32, 2079 (1991).
  • 9. Grynkiewicz G., Przewloka T., Szeja W. and Priebe W., Facile glycosidation of 1-O-silylated hexa- pyranoses. Proc. Am. Chem. Soc. Meet. (San Diego, CA). 207: CARB-36 (1994).
  • 10. Grynkiewicz G., Fokt I., Skibicki P., Pizewloka T., Szeja W. and Pricbe W., Polish .l Chem., 79, 335 (2005) [the preceding article in this issue].
  • 11. Thiem J. and Klaflke W., Top. Curr Chem., 154, 285 (1990).
  • 12. Toshima K. and Tatsua K., Chem. Rev., 93, 1503 (1993).
  • 13. Marmbadi C. H. and Franck R.W., Tetrahedron, 56, 8385 (2000).
  • 14. Schene H. and Waldmann H., Chem. Commun, 2759 (1998).
  • 15. Roush W.R. and Bennett C.E., .J. Am. Chem. Soc., 121, 3541 (1999).
  • 16. Schmidt R.R. in: Comprehensive Organic Synthesis, (B.M. Trost, Ed.), Pergamon Press, Oxford, v. 6, 33 (1991).
  • 17. Koenigs W. and Knorr E., Ber: Dtsch. Chem. Ges., 34, 957 (1901).
  • 18.Pelyvas I.F., Monneret C. and Herczegh P., Synthetic Aspects of Aminodeoxysugars of Antibiotics, Springer Verlag, Berlin (1988).
  • 19. Kolar C. and Kneissl G., Angew. Chem. Int. Ed. EngI., 809 (1990). '
  • 20. Kolar C., Dehmel K., Moldenhauer H. and Gerken M., J Carbohydr Chem., 9, 873 (1990).
  • 21. Menyhart M., Kover K. and Sztaricskai F.J., .J. Carbohydr: Chem., 9, 253 (1990).
  • 22. Smudinger H. and Meyer J., Helv. Chim. Acla, 2, 635 (1919).
  • 23. Gololobov Yu.G, Zhmuroval.N. and Kasukhin L.F., Tetrahedron, 37, 437 (1981).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0002-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.