PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential and Strain rate Impact on the Electrochemical Properties of 304l Stainless Steel Under tensile Stresses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The majority of this work was to find out if Dynamic Electrochemical Impedance Spectroscopy can be applied for non-stationary electrochemical processes examination, such as the instantaneous changes during the passive layer cracking. Characterization of the passive layer cracking dynamics is very important from the diagnostics point of view. Especially, if investigated materials are protected by passive films exposed to substantial loads. Presented paper proves that the Dynamic Electrochemical Impedance Spectroscopy allows the determination of instantaneous impedance changes during the initiation stage of the SCC process, which is related to the crack of passive layer. Moreover, mentioned procedure makes possible prediction of the passive layer rupture under tensile stresses. Instantaneous impedance spectra for 304L stainless steel specimens in 0.5 M NaCl solution at room temperature were recorded. Measurements were conducted for different potential values and various strain rates according to the double-factor impact - electrochemical and mechanical. Impedance spectra have been depicted in the 3D diagrams illustrating system's impedance evolution over time. Each spectrum refers to 0.6 second of process duration, so reflecting the changes in the investigated system dynamics.
Rocznik
Strony
1823--1831
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • Department of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology, PL - 80-952 Gdansk, 11/12 Narutowicza Str., Poland
  • Department of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology, PL - 80-952 Gdansk, 11/12 Narutowicza Str., Poland
autor
  • Department of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology, PL - 80-952 Gdansk, 11/12 Narutowicza Str., Poland
Bibliografia
  • 1. Newman R.C., Stress-Corrosion Cracking Mechanisms: in (Eds.) P. Marcus and J. Oudar, Corrosion Mechanisms in Theory and Practice, Marcel Dekker, Inc., New York, 1995, pp. 309-372.
  • 2. SuterT., Webb E.G., Bohni H. and Alkire R.C., J. Electrochem. Soc., 148, B174 (2001).
  • 3. Christman T.K., Corrosion, 46, 450 (1990).
  • 4. Ashour E.A., Abd El Meguid E.A. and Ateya B.G., Corrosion, 53,450 (1997).
  • 5. Isaacs H.S., J. Electrochem. Soc., 135,2180 (1988).
  • 6. McEvily A.J. and Bond Electrochem. Soc., 112, 112 (1965).
  • 7. Rhodes P.R., Corrosion, 25,462 (1969).
  • 8. Cottis RA. and Husain Z., Met. Technol., 9, 104 (1982).
  • 9. Shalby H.M., Begeley J.A. and Macdonald D.D., Corrosion, 52,262 (1996).
  • 10. Gabrielli C., Identification of electrochemical processes by frequency response analysis, Technical Report Number 004/83, Farenborough 1995.
  • 11. Macdonald D.D., Application of Electrochemical Impedance Spectroscopy in Electrochemistry and Corrosion Science: in (Eds.) R. Varma and J.R. Selman, Techniques for Characterization of Electrodes and Electrochemical Processes, John Wiley & Sons, Inc., New York, 1991, pp. 515-647.
  • 12. Ross J. Macdonald and Johnson W.B., Fundamentals of Impedance Spectroscopy, in (Ed.), J. Ross Macdonald Impedance Spectroscopy: Emphasizing Solid Materials and Systems, John Wiley & Sons, Inc., New York, 1987, pp. 1-20.
  • 13. Oltra R. and Keddam M., Corros. Sci., 28, 1 (1988).
  • 14. Lee W.S. and Lin C.F., Mat. Sci. Eng., A 308,124 (2001).
  • 15. Mateo A., Llanes L., Iturgoyen L. and Anglada M., Acta Mater., 44, 1143 (1996).
  • 16. Lee W.S. and Lin C.F., Scripta Mater., 43, 777 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0024-0116
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.