PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical Formation and Properties of (Ir+Pb) Oxide

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The incorporation of Pb redox sites into nanoparticulate Ir oxide films has been realized by the initial electrodeposition of Pb metal on Au substrate, followed by Ir metal coating. The amount of Pb was varied according to the conditions of the deposition process, i.e. time, potential and solution used. Nanoparticulate metallic Ir films were obtained via sol-gel (SG) route and the oxidation of the surface was performed electrochemically in sulfuric acid solutions. The amount of Pb incorporated into the oxide film significantly changed the electrochemical response of the mixed oxide.With a relatively large amount of Pb deposit, consisting of under potential deposition (upd) Pb monolayer and Pb clusters, metallic Ir coating is more difficult than on Au and, consequently, only a small amount of Ir oxide is formed by potential cycling of the Au/(Pb+Ir) metallic electrode. The redox kinetics of Ir(III)/Ir(IV) sites, calculated from chronocoulometric data as a diffusional constant D1/2C, is diminished. In contrast, with a relatively small amount of Pb present only as clusters on the Au/Pb electrode after potential cycling in sulfuric acid solution, the diffusional kinetics of Ir(III)/Ir(IV) sites is enhanced (7×10-7 mol cm-2 s-1/2 vs. 4×10-7 mol cm-2 s-1/2) as compared to Ir oxide. Also, a small negative shift of the prepeak region of the (Ir+Pb) oxide suggests the presence of additional redox process due to incorporation of Pb sites into the oxide structure. When such mixed (Ir+Pb) oxide containing a small amount of Pb is transferred into 1MKOH solution, the redox processes of Ir and Pb are then more clearly separated and new redox peaks appear negative of Ir oxide peaks at -0.2 V, and also at +0.3 V and +0.9 V, proving the presence of Pb in the oxide. These redox potentials are comparable to the potentials of Pb2(PbxIr2-x)O7-y compound obtained thermally and to the redox potentials of Pb electrode in alkaline solutions. The structure of the Pb and Ir deposits and the mixed (Ir+Pb) oxide films was probed using STM imaging. The Pb monolayer (upd) and uniformly distributed Pb clusters ca. 100-150 nm in size were observed on the Au support. The size of metallic Ir nanoparticles is estimated as close to 3-4 nm, increasing to 10-15 nm and 20-30 nm after oxidation of IrOx and mixed (Ir+Pb) oxide, respectively.
Rocznik
Strony
1391--1412
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
  • Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
autor
  • Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Bibliografia
  • 1. Conway B.E. and Mozota J., Electrochim. Acta, 28,9 (1983).
  • 2. Mozota J. and Conway B.E., Electrochim. Acta, 28, 1 (1983).
  • 3. Burke L.D. and Whelan D.P., J. Electroanal. Chem., 124, 333 (1981).
  • 4. Hefny M.M. and Abdel-Wanees S., Electrochim. Acta, 41, 1119 (1996).
  • 5. Mozota J. and Conway B., J. Electrochem. Soc., 128, 2124 (1981).
  • 6. Gottesfeld S. and Srinivassan S., J. Electroanal. Chem., 86, 89 (1978).
  • 7. Nahor G.S., Hapiot H., Neta P. and Harriman A., J. Phys. Chem., 95, 95 (1991).
  • 8. Pauporte Th., Andolfato F. and Durrand R., Electrochim. Acta, 45, 431 (1999).
  • 9. Trassatti S., Interfacial Electrochemistry of Conductive Oxides for Electrocatalysis, in “Interfacial Electrochemistry. Theory, Experiment, and Applications”, ed. A. Więckowski, Marcel Dekker, Inc., 1999, p. 769.
  • 10. Roblee L.S., Lefko J.I. and Brummer S.B., J. Electrochem. Soc., 130, 731 (1983).
  • 11. Ballestrasse C.L., Ruggeri RT. and Beck T., Ann. Biomed. Eng., 13,405 (1985).
  • 12. Hitchman M.L. and Ramamathan S., Analyst, 113, 35 (1998).
  • 13. Kinlen P.J., Heider J.E. and Hubbard D.E., Sensors and Actuators, B, 13 (1994).
  • 14. Izutsu K. and Yamamoto H., Analytical Sciences, 12, 905 (1996).
  • 15. Abu IrhayemE., Elżanowska H., Jhas A., Skrzynecka B. and Birss V.I,,J. Electroanal. Chem., 538,153 (2002).
  • 16. Conway B.E., J. Electrochem. Soc., 138, 1539(1991).
  • 17. Bardin M., Loheac P., Petit M., Plichon V. and Richard N., New J. Chem., 19, 59 (1995).
  • 18. Conway B.E., Birss V. and Wojtowicz J., J. Power Sources, 66, 1 (1997).
  • 19. Burke L.D. and Whelan D.P., J. Electroanal. Chem., 162, 121 (1984).
  • 20. Burke L.D., Mulcahy J.K. and Whelan D.P., J. Electroanal. Chem., 163, 117 (1984).
  • 21. Burke L.D. and Scannel R.A., J. Electroanal. Chem., 175, 119 (1984).
  • 22. Pickup P.G. and Birss V.l., J. Electroanal. Chem., 220, 83 (1987).
  • 23. Pickup P.G. and Birss V.l., J. Electroanal. Chem., 240, 171 (1988).
  • 24. Pickup P.G. and Birss V.l., J. Electroanal. Chem., 240, 185 (1988).
  • 25. Pickup P.G. and Birss V.l., J. Electrochem. Soc., 135,41 (1988).
  • 26. Pickup P.G. and Birss V.l., J. Electroanal. Chem., 135, 126 (1988).
  • 27. Birss V.l., Elżanowska H. and S. Gottesfeld, J. Electroanal. Chem., 318, 327 (1991).
  • 28. Elżanowska H. and Birss V.l., J. Appl. Electrochem., 23, 646 (1993).
  • 29. Elżanowska H. and Birss V.l., PolishJ. Chem., 24, 38 (1996).
  • 30. Birss V.l., Bock C., and Elżanowska H., Can. J. Chem., 75, 1687 (1997).
  • 31. H. Elżanowska, J. Segal and V.l. Birss, Electrochim. Acta, 44, 4515 (1999).
  • 32. Birss V.l., Andreas H., Serebrennikova I. and Elżanowska H., Electrochem. and Solid State Leiters, 2,326(1999).
  • 33. Andreas H., Elżanowska H., Serebrennikova I. and Birss V.l., J. Electrochem. Soc., 147,4598 (2000).
  • 34. Bock C. and Birss V.l., J. Electroanal. Chem., 475, 20 (1999).
  • 35. Bock C. and Birss V.l., J. Electrochem. Soc., 146, 1766 (1999).
  • 36. Woods R., J. Electroanal. Chem., 49, 217 (1974).
  • 37. Elżanowska H., Abu-Irhayem E., Skrzynecka B. and Birss V.l., Electroanalysis, 16, 1 (2004).
  • 38. Czerwiński A. and Żelazowska M., J. Electroanal. Chem., 410, 55 (1996).
  • 39. Czerwiński A. and Żelazowska M., J. Power Sources, 64, 29 (1997).
  • 40. Czerwiński A., Żelazowska M., Grden M., Kuc K., Milewski J.D., Nowacki A., Wójcik G. and Kopczyk M., J. Power Sources, 85, 49 (2000).
  • 41. Adzic R., Yeager E. and Cahan B.D., J. Electrochem. Soc., 121,474 (1974).
  • 42. Birss V.l. and Shevalier M.T., J. Electrochem. Soc., 137,2643 (1990).
  • 43. Zeng X. and Bruckenstein S., J. Electrochem. Soc., 146, 2549 (1999).
  • 44. Kortenaar M.V., Vente J.F., Ijdo D.J. W., Müller S. and Kötz R., J. Power Sources, 56, 51 (1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0024-0082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.