PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency Distribution of Chemical Oscillations in the Closed belousov-Zhabotinsky Reaction

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential registers of chemical oscillations, generated in the closed Belousov- Zhabotinsky reaction, have been submitted to detail spectral analysis using two algorithms based on the Fourier transform. It has been found that for selected stationary fragments of this signal the FFT algorithm distinctly reflects the strength of the spectral components contained in an exemplary potential register of BZ reaction. The temporal localization of these components is hidden in the phase of the spectrum, what makes the drawing of correct conclusions about the process investigated impossible. The cone-shape distribution, belonging to the group of joint time-frequency transformations, has been proposed as a proper method of nonstationary signals analysis. Spectrograms obtained by the above method have been presented, showing frequency evolution of chemical oscillations in time domain and their energy distribution simultaneously. Good reproducibility of spectrograms for potential registers of different time courses has been found. On the basis of harmonic components analysis the linear dependency between the frequency of harmonics and the composition of BZ reacting mixture has been noticed.
Rocznik
Strony
575--582
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • Department of Electrochemistry, Corrosion & Materials Engineering, Chemical Faculty, Gdansk University of Technology, 80-952 Gdańsk, Narutowicza 11/12, Poland
autor
  • Department of Electrochemistry, Corrosion & Materials Engineering, Chemical Faculty, Gdansk University of Technology, 80-952 Gdańsk, Narutowicza 11/12, Poland
Bibliografia
  • 1. Field R.J., Koros E. and Noyes R.M, J. Am. Chem. Soc., 94, 25 (1972).
  • 2. Strizhak P. and Menzinger M., J. Chem. Educ., 73, 9 (1996).
  • 3. Wang J., Sarensen P.G. and Hynne F., Z Phys. Chem., 192 (1995).
  • 4. Johnson B.R., Scott S.K. and Thompson B.W., Chaos, 7, 2 (1997).
  • 5. Marchettini N. and Rustici M., Chem. Phys. Lett., 317 (2000).
  • 6. Masia M., Marchettini N., Zambrano V. and Rustici M., Chem. Phys. Lett., 341 (2001).
  • 7. Rustici M., Caravati C., Petretto E., Branca M. and Marchettini N., J. Phys. Chem. A, 103 (1999).
  • 8. Darowicki K., Krakowiak A. and Zieliński A., Electrochem. Comm., 4 (2002).
  • 9. Darowicki K., Felisiak W. and Zieliński A., J. Math. Chem., 33, 3-4 (2003).
  • 10. Ramirez R.W., The FFT fundamentals and concepts, Prentice Hall PTR, Englewood Cliffs, New Jersey 1985, p. 124.
  • 11. GrSchening K., Foundations of time-frequency analysis, Birkhauser, Boston 2001, p. 23.
  • 12. Poularikas, The Transforms and Applications Handbook: Second Edition, CRC Press LLC, Inc, Boca Raton 2000, p. 3.
  • 13. Darowicki K., Krakowiak A. and Zieliński A., J. Electrochem. Soc., 148, 5 (2001).
  • 14. Darowicki K. and Zieliński A., J. Electroanal. Chem., 504 (2001).
  • 15. Qian S. and Chen D., Joint time-frequency analysis, methods and applications, Prentice Hall PTR, Upper Saddle River, New Jersey 1996, p. 146.
  • 16. Mecklenbrauker W. and Hlawatsch F., The Wigner distribution, Elsevier, Amsterdam 1997, p. 7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0024-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.