PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical Functions for the Proton Transfer in the H5O+2 Complex Immersed in a Solvent (Water, 1-Octanol)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analytical functions for the energy barrier of the proton transfer in H5O2 + complex have been fitted by nonlinear regression from ab initio quantum mechanical calculations for the complex in gas phase and solvent phase (water, 1-octanol) simulated using the PCM approach. The best fitted function describing the proton transfer energy for any distance R between H3O+ and H2O and for any proton position is of the form E(R,r) = E(R/2)Erfc(z), where Erfc( z) is the complementary error function, z = [(r - 0.5R)/c]2, R is the O(H3O+)-O(H2O) distance, r is the space position of proton relative to R/2 and c a constant determined by regression for each proton transfer at a given R distance. The fitted functions are: E(R/2) = [a + b/(R/2)]2 which is the highest potential energy value for the proton situated at R/2 and c = a + bln(R/2). The energy barriers for the solvent phase are higher than those for the gas phase, because of the solute-solvent interactions considered by PCM. The energy barrier for the 1-octanol phase is somewhat lower than that for water phase, most likely due to the amphipathic character of the 1-octanol. The energy potential values for the proton transfer in solvent can be expressed as a sum of two terms corresponding to the gas phase and to solvent effects contributions.
Rocznik
Strony
279--285
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Institute of Physical Chemistry "I.G. Murgulescu" of Romanian Academy, Sp. Independentei 202, Bucharest, 060021, Romania
autor
  • Institute of Physical Chemistry "I.G. Murgulescu" of Romanian Academy, Sp. Independentei 202, Bucharest, 060021, Romania
Bibliografia
  • 1. Ojamae L., Shavitt I. and Singer S.J., J. Chem. Phys., 109, 5547 (1998).
  • 2. Tukerman M.E., Marks D., Klein M.L. and Parinello M., Science, 275, 817 (1997).
  • 3. Tukerman M.E., Marks D., Klein M.L. and Parinello M., Nature, 417, 925 (2002).
  • 4. Shan Yuk Yin, Muegge Ingo and Warshel A., Proteins, 36, 484 (1999).
  • 5. Scheiner S. and Xiaofeng D., “Searchfor Analytical Functions to Simulate Proton Transfer in Hydrogen Bond", in “Modeling the Hydrogen Bond', Ed. Smith D.A., ACS Symposium, vol. 509,125 (1994).
  • 6. Best S.A., Merz K.M. Jr. and Reynolds C.H., J. Phys. Chem. B, 101, 10479 (1997).
  • 7. Best S.A., Merz K.M. Jr. and Reynolds C.H., J. Phys. Chem. B, 103, 714 (1999).
  • 8. Miertus S., Scrocco E. and Tomasi J., J. Chem. Phys., 55, 117 (1981).
  • 9. Cramer C.J. and Truhlar D.G., Chem. Rev., 99, 216 (1999).
  • 10. Schmidt M.W., Baldrige K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen, K.A. Su S.J., Windus T.L., Dupuis M. and Montgomery J.A., J. Comput. Chem. 14,1347 (1993).
  • 11. Amovilli C. and Mennucci B,,J. Phys. Chem. B, 101, 1051 (1997).
  • 12. Chuman H., Mori A. and Tanaka H., Analytical Sciences (Japan Society for Analytical Chemistry), 18, 1015(2002).
  • 13. Winget P., Dolnay D.M., Giesen D.J., Cramer C.J. and Thrular D.G., “Minnesota Solvent Descriptor Database”, Dept, of Chemistry and Supercomputer Institute, Univ. of Minesota, July, 1999.
  • 14. Marx D., Tuckerman M.E., Hutter J. and Parinello M., Nature, 397, 601 (1999).
  • 15. Mo Y. and Gao J., “Simulation of Chemical Reactions in Solution Using Ab Initio Molecular Orbital- Valence Bond Model.” in “Theoretical Methods in Condensed Phase Chemistry", Ed., Kluwer Academic Publishers, Dordrecht, p. 247 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0023-0170
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.