Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Two different methods of principal component analysis (PCA) were applied to resolve pure component spectra in the two-component spectral mixture of gradually quenched fluorescence. The two approaches differ by that in the first method one uses an additional physical constraint to arrive at the desired solution, while none of this but simple matrix transformations are used to this aim in the other. Both methods are classified as the approaches of Principal Component Analysis with Self-Modeling (PCA-SM). The first technique is known as PCA-SM-SV, where SV stands for a constraint related to the Stern-Volmer equation, the second method is known as Kubista's approach to two same-sized correlated sets of spectral data matrices. The methods were applied to resolve the pure component fluorescence spectra in the fluorescence mixture of two conformers of trans-1-(2-anthryl)-2-phenylethene (t-APE) quenched by fumaronitrile in toluene. The results of the application of both methods to precisely measured spectra appear practically equivalent and eventually dispel the controversy existing in the literature about the fluorescence spectral profiles of the t-APEA and t-APEB conformers in favour of the PCA-SM-SV method which results were earlier questioned by the outcome of other methods.
Wydawca
Czasopismo
Rocznik
Tom
Strony
125--138
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Cracow, Poland
autor
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Cracow, Poland
autor
- Department of Chemistry, University of Agriculture, 30-059 Cracow, Poland
Bibliografia
- 1. Fischer G. and Fischer E., J. Phys. Chem., 85, 2611 (1981).
- 2. Wismontski-Knittel T., Das P.K. and Fischer E., J. Phys. Chem., 88, 1163(1984).
- 3. Ghiggino K.P., Skilton P.F. and Fischer E., J. Am. Chem. Soc., 108, 1146 (1986).
- 4. Bartocci G., Masetti F., Mazzucato U., Baraldi I. and Fischer E., J. Mol. Struct., 193, 173 (1989).
- 5. Spalletti A., Bartocci G., Masetti F., Mazzucato U. and Cruciani G., Chem. Phys., 160, 131 (1992
- 6. Karatsu T., Yoshikawa N., Kitamura A. and Tokumaru K., Chem. Lett., 381 (1994).
- 7. Saltiel J., Zhang Y., Sears D.F. Jr. and Choi J.-O., Res. Chem. Intermed., 21, 899 (1995).
- 8. Bartocci G., Mazzucato U. and Spaletti A., Chem. Phys., 202, 367 (1996).
- 9. Saltiel J., Zhang Y. and Sears D.F. Jr., J. Phys. Chem. A, 101, 7053 (1997).
- 10. Jacobs H.J.C. and Havinga E., Adv. Photochem., 11, 305 (1979).
- 11. Lawton W.H. and Sylvestre E.A., Technometrics, 13, 617 (1971).
- 12. Sylvestre E.A., Lawton W.H. and Maggio M.S., Technometrics, 16, 353 (1974).
- 13. Saltiel J., Sears D.F. Jr., Choi J.-O., Sun Y.-P. and Eaker D.W., J Phys. Chem. A, 98, 35 (1994).
- 14. Birks J.B., Bartocci G., Aloisi G.G., Dellonte S. and Barigelletti F., Chem. Phys., 51, 113 (1980).
- 15. Cruciani G., Spalletti A. and Bartocci G., Z Phys. Chem., 172, 227 (1991).
- 16. Bartocci G., Spalletti A., Masetti F. and Cruciani G., J. Mol. Struct., 165, 165 (1993).
- 17. Kubista M„ Chemom. Intell. Lab. Syst., 7, 273 (1990).
- 18. Scarminio I. and Kubista M., Anal. Chem., 65, 409 (1993).
- 19. Siegrist A.E., Liechti P., Meyer H.R. and Weber K., Helv. Chim. Acta, 52, 2521 (1969).
- 20. Sun Y.-P., Sears D.F. Jr. and Saltiel J., J. Am. Chem. Soc., 110, 6277 (1988).
- 21. Saltiel J., Sears D.F. Jr. and Turek A.M., J. Phys. Chem. A, 105, 7569 (2001).
- 22. Booksh K.S. and Kowalski B.R., J. Chemometrics, 8, 287 (1994).
- 23. Sanchez E. and Kowalski B.R,,Anal. Chem., 58,496 (1986).
- 24. Sanchez E. and Kowalski B.R., J. Chemometrics, 2, 247 (1988).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0023-0151
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.