Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present essay represents an effort to focus on some aspects of the bonding abilities of phenol throughout a theoretical study of the three potential energy surfaces of the interaction of phenol with the HCN, HOCN, and HF (including HCl) molecules. The studied surfaces clearly demonstrate the existence of the alternative bonding of phenol via its _ cloud, largerly localized in the vicinity of the para carbon atom, leading to the formation of metastable _ hydrogen-bonded complexes with sufficiently large lifetimes comparable with experimental timescales.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1233--1242
Opis fizyczny
Twórcy
autor
- Department of Chemistry, University of Leuven, Celestijnenlaan 200 F, B-3001 Leuven, Belgium
autor
- Department of Chemistry, University of Leuven, Celestijnenlaan 200 F, B-3001 Leuven, Belgium
Bibliografia
- 1. Runge F.F., Ann, Phys. Chem., 31, 65 (1834).
- 2. Runge F.F., Ann. Phys. Chem., 32, 308 (1834).
- 3. Gerhard C., Ann. Chim., vii, 215 (1843).
- 4. Davies M.M., Acid-Base Behaviour in Aprotic Organic Solvents, Natl. Bur. Standards Monograph 105, Washington, D.C. 1968.
- 5. Nagakura S. and Baba H., J. Am. Chem. Soc., 74, 5693 (1952).
- 6. Nagakura S.,J. Am. Chem. Soc., 76, 3070 (1954),
- 7. Baba H. and Suzuki S., J. Chem. Phys., 41, 895 (1964).
- 8. Baba H., Matsuyama A. and Kokubun H., Spectrochim, Acta A, 25, 1709 (1969),
- 9. Scott R, De Palma D. and Vinogradov S., J. Phys. Chem., 72, 3192 (1968).
- 10. Scott R. and Vinogradov S., J. Phys. Chem., 73, 1890 (1969).
- 11. Hudson R.A., Scott R. and Vinogradov S., J. Phys. Chem., 76, 1989 (1972).
- 12. Zeegers-Huyskens Th. and Huyskens P., in Molecular Interactions, Vol. 2, Eds. H. Ratajczak and W.J. Orville-Thomas, Wiley, NY 1981.
- 13. Sobczyk L., Ber. Bunsenges. Phys. Chem., 102,377 (1998).
- 14. Nguyen M.T., Kryachko E.S. and Vanquickenbome L., in: The Chemistry of Phenols, Ed. Z. Rappoport, Wiley, NY 2002. See also Kryachko E.S., Nguyen M.T., J. Phys. Chem. A, 106, 000 (2002).
- 15. Dewar M.J.S,, J. Chem. Soc., 406 (1946).
- 16. Morokuma K., J. Chem. Phys., 55, 1236 (1971).
- 17. However, the thorough analysis of the potential energy surface of the phenol-water., complex, conducted in [ 18] and juxtaposing it with the PESs of the phenol-water,^ complexes, demonstrates that four differ¬ent structures, having either 2D or 3D patterns of water molecules, resides at the very bottom of this PES. A 3D pattern originates when the terminated water molecule becomes contiguous to the n cloud of the phenol ring. This can be explained by that the ability of the phenolic OH-group to accept a hydrogen bond becomes almost exhausted when three water molecules form a 2D ring nearby it (similarly to the ring or book structures of water hexamer which are no longer energetically favorable [19]) and, therefore, competes with the ability of the tt cloud ofthe phenol ring to form the subtle n one with a water molecule.
- 18. Kryachko E.S. and Nakatsuji H., J. Phys. Chem. A, 106, 731 (2002).
- 19. Kryachko E.S., Chem. Phys. Lett., 314, 353 (1999) and references therein.
- 20. All computations were performed using the density functional hybrid B3LYP potential in conjunction with split-valence 6-311++G(d,p) basis set within GAUSSIAN 98 suit of packages [21], The tight convergence criterion was employed in all geometrical optimizations. Numerical integrations in density functional B3LYP calculations were performed via using the default (75, 302) and ‘ultrafine’ (99, 590) grids of points. Harmonic vibrational frequencies were kept unsealed. Zero-point vibrational energies (ZP VE) were also calculated together with thermodynamic quantities (at T = 298.15 K). Throughout the present work, the energy comparison for the energy minimum structures was carried out in terms ofthe Electronic Energy + ZPVE.
- 21. Frisch M.J., Trucks G. W., Schlegel H.B., Scuseria G.E., Robb M. A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A., Stratmann Jr., R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul G., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I,, Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Andres J.L., Gonzalez C., Head-Gordon M., Replogle E.S. and Pople J.A., GAUSSIAN 98, Revision
- A. 9, Gaussian, Inc., Pittsburgh, PA 1998.
- 22. Pimentel G.C. and McClellan A.L., The Hydrogen Bond, Freeman, San Francisco 1960.
- 23. Schuster P., Zundel G. and Sandorfy C., Eds., The Hydrogen Bond. Recent Developments in Theory and Experiments, North-Holland, Amsterdam 1976.
- 24. Kim K.S., Tarakeshwar P. and Lee J.Y., Chem. Rev., 100, 4145 (2000).
- 25. Rank D.H., Rao B.S. and Wiggins T.A., J. Mol. Spectrosc., 17, 122 (1965).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0023-0037