PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Enthalpy of Formation of Hexagonal Boron Nitride

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energies of combustion in fluorine of three specimens of hexagonal boron nitride with different degree of ideal crystalline structure have been measured in a twocompartment calorimetric bomb at 298.15 K according to reaction: BN(cr) + 3/2F2(g) = BF3(g) + 1/2N2(g), and new standard molar enthalpies of formation f m H0 have been calculated and used to rank the samples in order of stability: f m H0 = -(245.8š1.1) kJ/mol for turbostratic sample, that deviates most from the crystalline structure; f m H0 = -(248.5š0.9) kJ/mol for the sample with an interlayer spacing that is only about 0.5% larger than the ideal crystalline h-BN; and f m H0 = -(250.8š1.2) kJ/mol for crystalline h-BN.
Rocznik
Strony
891--899
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Chemical and Physical Properties Division, National Institute of Standards and Technology, Gaithersburg , Maryland 20899, U.S.A. Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44, 012-224 Warsaw, Poland, ivona@ichf.edu.pl
Bibliografia
  • 1. Meller A., The System Boron-Nitrogen, Gmelin Handbook B 4th Suppl. Vol. 3a, (1992).
  • 2. Rapoport E., Cubic Boron Nitride - A Review, Ann. Chim., 10, 607 (1985).
  • 3. Moore A.W. and Strong S.L., Ceram. Eng. Sci. Proc., 10, 846 (1989).
  • 4. Moore A.W., Nature, Vol. 221, 5186, 1136 (1969).
  • 5. O’Hare P.A.G., J. Chem. Thermodyn., 25, 391 (1993).
  • 6. O’Hare P.A.G., J. Chem. Thermodyn., 24, 639 (1992).
  • 7. O’Hare P.A.G., The Nuts and Bolts and Results of Fluorine Bomb Calorimetry, Energetics of Stable Mole¬cules and Reactive Intermediates, Ed. Minas de la Piedade M.E., Kluver Academic Publishers (1999),
  • 8. Hubbard W.N., Katz C. and Waddington G.J., J. Phys. Chem., 58, 142 (1954).
  • 9. Nuttall R.L., Wise S. and Hubbard W.N., Rev. Sci. Instrum., 32, 1402 (1961).
  • 10. Hubbard W.N., Scott D. W. and Waddington G.J., Experimental Thermochemistry, Ed. Rossini F.D. NY (1956), chap. 5.
  • 11. O’HareP.A.G., J. Chem. Thermodyn., 17, 349(1985).
  • 12. Hubbard W.N., Experimental Thermodynamic, Vol. II, Ed. Skinner H.A., Interscience: NY (1962), chap. 6.
  • 13. Hirschfelder J.O., Curtiss C.F. and Bird R.B., Molecular Theoiy of Gases and Liquids, Wiley: NY (1954).
  • 14. White D., Hu J.-H. and Johnston H.L., J. Chem. Phys., 21, 1149 (1953).
  • 15. Brooks G.L. and Raw C.J.G., Trans. Farad. Soc., 54, 972 (1958).
  • 16. Heintz A. and Lichtenthaler R.N., Ber. Bunsenges. Phys. Chem., 80, 962 (1976).
  • 17. Johnson G.K., Feder H.M. and Hubbard W.N..J. Chem. Phys., IQ, 1 (1966).
  • 18. Gurvich L.V., Veyts I.V. and Alcock C.B., Thermodynamic Properties of Individual Substances, Vol. 2 Hemisphere: NY (1991).
  • 19. Barin I., Thermochemical Data of Pure Substances, Vol. I and II, VCh Verlagsgesellschaft, Germany (1995).
  • 20. Wise S.S., Margrave J.L., Feder H.M. and Hubbard W.N., J. Chem. Phys., 70, 7 (1966).
  • 21. Gross P., Hayman C. and Stuart M.C., Proc. Brit. Ceram. Soc., 8, 39 (1967).
  • 22. Leonidov V.Ya. and Timofeev I.V., Russ. J. Phys. Chem., 61, 1503 (1987).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0020-0098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.