PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Theoretical Study on (eta5-C5H5)Fe(CO)(PPh3)(C(O)CHMe) Anion Structure and Stereoselectivity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organometallic systems provide an exceptional tool in the stereoselective synthesis. The source of this selectivity, however, frequently remains a challenging question. In recent years, theoretical studies of mechanisms of organometallic and metalloprotein catalysis have received considerable attention. The density functional theory (DFT) methods have been shown to be very successful in these studies. Their application, however, is still limited by the performance of the present computers. As the result, a new class of methods, which employ quantum mechanical calculations combined with either semiempirical and/or molecular mechanics levels (QM/MM), has been developed. This stimulated development of a number of new semiempirical methods, which can handle metals. We present a comparison of a few of these new methods with the DFT level on the example of the acetyliron. In addition, the DFT calculations are used to shed some light on the mechanism of the stereospecific catalysis by acetyliron.
Słowa kluczowe
Rocznik
Strony
737--744
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • FQS-Poland, Cracow, Poland
autor
  • Department of Chemistry, University of Minnesota, 207 Pleasant, Minneapolis, MN 55414, USA
  • Institute of Applied Radiation Chemistry, Zeromskiego 116, Technical University of Lodz, 90-924 Lodz, Poland
autor
  • Institute of Applied Radiation Chemistry, Zeromskiego 116, Technical University of Lodz, 90-924 Lodz, Poland
Bibliografia
  • 1. a) Bersuker I.B., Leong M.K., Boggs J.E. and Pearlman R.S., in Gao J. and Thompson M.A. (Eds.), Combined Quantum Mechanical and Molecular Mechanical Methods, ACS Symp. Ser. 712; ACS; Washington, DC, p. 66; b) Röthlisberger U., in Gao J. and Thompson M.A. (Eds.), Combined Quantum Mechanical and Molecular Mechanical Methods, ACS Symp. Ser. 712; ACS; Washington, DC, p. 264; c) Andruniow T., Zgierski M.Z. and Kozłowski P.M., Chem. Phys. Lett., 331, 509 (2000); d) Higgins L.A., Korzekwa K.R., Rao S., Shou M. and Jones J.P., Arch. Biochem. Biophys., 385, 220 (2001); e) Dunietz B.D., Beachy M.D., Cao Y., Whittington D.A., Lippard S.J. and Friesner R.A., J. Am. Chem Soc., 122, 2828 (2000).
  • 2. a) Hong G., Strajbl M., Wesołowski T.A. and Warshel A., J. Comput. Chem., 21,1554 (2000); b) Ogliaro F., Cohen S., Filatov M., Harris N. and Shaik S., Angew. Chem., Int. Ed., 39,3851 (2000); c) Dudev T. and Lim C., J. Am. Chem. Soc., 122, 11146 (2000).
  • 3. Jensen K. P., Sauer S.P.A., Liljefors T. and Norrby P.-O., Organomet., 20, 550 (2001).
  • 4. a) Stewart J.J.P., Int. J. Quantum Chem., 58, 133 (1996); b) Daniels A.D., Milliam J.M. and Scuseria G. E ., J. Chem. Phys., 107,425 (1997); c) Dixon S.L. and Merz K.M., J. Chem. Phys., 107,879 (1997).
  • 5. Maseras F. and Morokuma K.J., Comp. Chem., 16, 1170 (1995).
  • 6. PC Spartan Pro Version 1.0.5, Wavefunction, Inc., Irvine, CA, USA, 2000.
  • 7. Voityuk A.A. and Rosch N., J. Phys. Chem. A, 104, 4089 (2000).
  • 8. a) Dewar M.J.S., Jie C. and Yu G., Tetrahedron, 23, 5003 (1993); b) Holder A.J., Dennington R.D., Jie C. and Yu G., Tetrahedron, 50, 627 (1994).
  • 9. a) Aktogu N., Felkin H., Baird G.J., Davies S.G. and Watts O., J. Organomet. Chem., 262,49 (1984); b) Bartnicka E. and Zamojski A., Polish J. Chem., 71,1108 (1997); c) Wiśniewski K., Zamojski A. and Rogers R.D., Tetrahedron, 54, 14201 (1998).
  • 10. a) Davies S.G., Dordor-Hedgecock I.M., Warner P., Jones RH. and Prout K., J. Organomet. Chem., 285, 213 (1985); b) Liebeskind L.S., Welker M.E. and Fengl R.W., J. Am. Chem. Soc., 108, 6328 (1986); c) Wisniewski K. and Zamojski A., Polish J. Chem., 72, 1937 (1998).
  • 11. Brown S.L., Davies S.G., Warner P., Jones R.H. and Prout K., J. Chem. Soc., Chem. Commun 1446 (1985).
  • 12. Davies S.G., Kellie H.M. and Polywka R., Tetrahedron: Asymmetry, 5, 2563 (1994).
  • 13. a) Krajewski J. W., Gluziński P., Pakulski Z., Zamojski A., Mishnev A. and Kemme A., Carbohydr. Res., 252, 97 (1994); b) Pakulski Z. and Zamojski A., Tetrahedron, 51, 871 (1995); c) Bartnicka E. and Zamojski A., Polish J. Chem., 72, 688 (1998).
  • 14. Davies S.G., Aldrichimica Acta, 23, 37 (1990).
  • 15. Brunner H., Angew. Chem. Int. Ed., 38, 1194 (1999) and references therein.
  • 16. Davis S.G. and Seeman J.I., Tetrahedron Lett., 25, 1845 (1984).
  • 17. Attig T.G., Teller RG., Wu S.-M., Bau R. and Wójcicki A., J. Am. Chem. Soc., 101, 619 (1979).
  • 18. Wiśniewski K., Pakulski Z., Zamojski A. and Sheldrick W.S., J Organomet. Chem., 523,1 (1996).
  • 19. Becke A.D., Phys. Rev. A, 38, 3098 (1988).
  • 20. Perdew J.P, in: Ziesche P. P and Eschrig H. (Eds.), Electronic Structure of Solids ‘91, Akademie Verlag; Berlin, 1991, page 11.
  • 21. GodboutN., Salahub D.R., Andzelm J. and Wimmer E., Can. J. Chem., 70, 560 (1992).
  • 22. Andzelm J. and Wimmer E., J. Chem. Phys., 96, 1280 (1992).
  • 23. CAChe v4.4, CAChe Group, Fujitsu, Beaverton, OR 97006, USA, 2000.
  • 24. WinMOPAC Version 3.0, Fujitsu Ltd, Tokyo, Japan, 2000.
  • 25. Stewart J.J.P., MOPAC2000, Fujitsu Limited, Tokyo; Japan, 2000.
  • 26. Dewar M. and Thiel W., J. Am. Chem. Soc., 99, 4499 (1997).
  • 27. AMPAC Version 6.55, Semichem, Inc., Shawnee, KS, USA, 1999.
  • 28. Stewart J.J.P., J. Comp. Chem., 10, 209 (1989).
  • 29. Hyper Chem Release 6.02, Hypercube, Inc., Gainsville, FL, USA, 2000.
  • 30. PC Model 4, Serena Software, Bloomington, IN, USA, 1995.
  • 31. Since only an average value of the three Cph-P-Fe valence angles has been reported in litrerature, we were unable to compare the calculated value to the experimental one.
  • 32. a) Wondimagegn T. and Ghosh A., J. Phys. Chem. B, 10, 10858 (2000); b) Havlin R.H., Godbout N., Salzmann R., Wojdelski M., Arnold W., Schulz C.E. and Oldfield E., J. Am. Chem. Soc., 120, 3144  V. Anisimov et al. (1998); c) Boulet P., Buchs M., Chermette H., Daul C., Furet E., Gilardoni F., Rogemond F., Schläpfer C. W. and Weber J., J. Phys. Chem. A, 105, 8999 (2001); d) Stein M., van Lenthe E., Baerends EJ. and Lubitz W., J. Am. Chem. Soc., 123, 5839 (2001); e) Maestre IM., Lopez X., Bo C., Poblet J.M. and Casafi-Pastor N., J. Am. Chem. Soc., 123, 3749 (2001); f) Harvey J.N., J. Am. Chem. Soc., 122, 12401 (2000) ; g) Dudev T. and Lim C., J. Am. Chem. Soc., 122,11146 (2000); h) Kozlowski P.M., Spiro T.G. and Zgierski M.Z., J. Phys. Chem. B, 104,10659 (2000); i) Xu X.P. and Au-Yeung S.C.F., J. Am. Chem. Soc., 122, 6468 (2000); j) Spiro T.G., J. Phys. Chem. A, 103, 1357 (1999).
  • 33. a) Borve K.J., Jensen V.R., Karlsen T., Stovneng I.A. and Swang O., J. Mol. Model., 3, 193 (1997); b) Dybala-Defratyka A. and Paneth P., J. Inorg. Biochem., 86,681 (2001); c) Bosque R. and Maseras F., J Comp. Chem., 21, 562 (2000); d) Ibarz A., Ruiz E. and Alvarez S., J. Chem. Soc. Dalton Trans., 1463 (2000).
  • 34. Verdaguer X., Vázquez J., Fuster G., Bemardes-Génisson V., Greene A.E., Moyano A., Perica M.A. and Riera A., J. Org. Chem., 63, 7037 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0020-0082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.