Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A variety generated by a class K of BCK-algebras consists of BCK-algebras if and only if it satisfies a certain kind of identity, first discovered by Komori. A similar phenomenon is shown to hold more generally in a certain class of quasivarieties of logic that includes not only the class of BCK-algebras but also such classes as the quasivariety of biresiduation algebras and quasivarieties of algebras with an equivalence operation. We describe a set of identities (which we call Komori identities), and show that the variety generated by a class K of algebras in one of the quasivarieties considered is contained in the quasivariety if and only it it satisfies a Komori identity. We use the result to establish (i) that the subvarieties of any of the quasivarieties studied are congruence 3-permutable and (ii) that the varietal join of two subvarieties of any of the quasivarieties studied is contained in the quasivariety.
Czasopismo
Rocznik
Tom
Strony
79--106
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago Chicago, IL 60607
autor
- Department of Mathematics University of Wisconsin-Parkside Kenosha, WI 53141
Bibliografia
- [1] P. Agliano and A. Ursini, Ideals and other generalizations of congruence classes, J. Austral. Math. Soc. Ser. A 53 (1992), 103–115.
- [2] W. J. Blok and D. Pigozzi, Algebraizable logics, Mem. Amer. Math. Soc. 77 (1989) (396):vi+78m.
- [3] W. J. Blok and J. G. Raftery, On the quasivariety of BCK-algebras and its subvarieties, Algebra Universalis 33 (1995), 68–90.
- [4] W. J. Blok and J. G. Raftery, On congruence modularity in varieties of logic, Internal Report No. 6, University of Natal, 1999.
- [5] H. P. Gumm and A. Ursini, Ideals in Universal Algebra, Algebra Universalis 19:1 (1984), 45–54.
- [6] J. Hagemann, On regular and weakly regular congruences, Preprint No. 75, Technische Hochschule Darmstadt, June 1973.
- [7] D. Higgs, Dually residuated commutative monoids with identity element as least element do not form an equational class, Math. Japon. 29:1 (1984), 69–75.
- [8] P. M. Idziak, On varieties of BCK-algebras, Math. Japonica 28:1 (1983), 157–162.
- [9] P. M. Idziak, Elementary theory of finite equivalential algebras, Reports on Mathematical Logic 25 (1991), 81–89.
- [10] K. Iséki, An algebra related with a propositional calculus, Proc. Jap. Acad. 42 (1966), 26–29.
- [11] J. K. Kabziński and A. Wroński, On equivalential algebras, in Proceedings of the 1975 International Symposium on Multiple-Valued Logic, Indiana University, Bloomington, IA, May 1975, pp. 419–428.
- [12] S. B. La Falce, On the equivalence operation in algebras of logic, Ph.D. thesis, University of Illinois at Chicago, 1997.
- [13] M. Pałasiński, On ideals and congruence lattices of BCK-algebras, Math. Japonica 26 (1981), 543–544.
- [14] A. N. Prior, Formal logic, Clarendon Press, Oxford, second edition, 1962.
- [15] J. G. Raftery and T. Sturm, Tolerance numbers, congruence n-permutability, and BCK-algebras, Czechoslovak. Math. J. 42 (1992), 727–740.
- [16] D. Sacks, Identities in finite partition lattices, Proc. Amer. Math. Soc. 12 (1961), 944–945.
- [17] C. J. van Alten, Personal communication.
- [18] C. J. van Alten and J. G. Raftery, On the lattice of varieties of residuation algebras, Algebra Universalis 41 (1999), 283–315.
- [19] A. Wroński, BCK-algebras do not form a variety, Math. Japonica 28 (1983), 211–213.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0010-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.