PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zmiany mikrostruktury i właściwości resztkowe kompozytów cementowych zbrojonych włóknami poddanych działaniu wysokich temperatur

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Microstructural changes and residual properties of fiber reinforced cement composites exposed to elevated temperatures
Języki publikacji
PL
Abstrakty
PL
Podgrzanie do wysokiej temperatury powoduje nieodwracalne zmiany mikrostruktury kompozytów cementowych powodujący pogorszenie ich właściwości mechanicznych i trwałości. W pracy zbadano wpływ wysokich temperatur, sięgających do 1000oC, na skład fazowy i mikrostrukturę czterech różnych rodzajów zbrojonych włóknami kompozytów cementowych, przy zastosowaniu rentgenografi i, porozymetrii rtęciowej oraz metody BET. Właściwości resztkowe określono w oparciu o wytrzymałość na zginanie i pozorną dyfuzyjność wilgoci. Wyniki doświadczeń pokazują, że proces zniszczenia matrycy (spiekanie żelu i rozszerzalność kruszywa) wpływa znacznie bardziej na układ porów niż zniszczenie nietrwałych termicznie włókien. Korzystny wpływ na resztkową wytrzymałość na zginanie mają trwałe termicznie włókna, co najmniej do 600oC, jednak względne zmiany wytrzymałości kompozytów z tymi włóknami są większe. Stwierdzono, że pozorna dyfuzyjność wilgoci jest wykładniczo skorelowana z objętością porów kapilarnych.
EN
The high temperature load causes irreversible changes in the microstruclure of cementitious composites resulting in decrease of their mechanical performance and durability. In this paper, the effect of elevated temperatures up to 1000°C on the mineralogical composition and microstructure of four different types of fiber reinforced cement composites is evaluated by means of X-ray diffraction analysis, mercury intrusion porosimetry and nitrogen adsorption porosimetry. The residual properties are characlerized by bending strength and apparent moisture diffusivity. Experimental results show that the degradation processes of matrix (gel sintering and aggregates expansion) influence the pore system more significantly than the degradation of thermally unstable fibers. The residual bending strength is positively affecled by the thermally stable fibers at least up to 600°C but in a relative sense the strength reduction in composites with this type of fibers is more significant. The apparent moisture diffusivity is found to be exponentially correlated by volume of capillary pores.
Czasopismo
Rocznik
Strony
77--89
Opis fizyczny
Bibliogr. 36 poz., il.
Twórcy
autor
autor
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czechy
Bibliografia
  • 1. J. Poděbradská, R. Černý, J. Drchalová, P. Rovnaníková, J. Šesták, Analysis of Glass Fiber Reinforced Cement Composites and Their Thermal and Hygric Material Parameters. Journal of Thermal Analysis and Calorimetry 77, 85-97 (2004).
  • 2. E. Vejmelková, P. Konvalinka, R. Černý, Effect of High Temperatures on Mechanical and Thermal Properties of Carbon-Fiber Reinforced Cement Composite. Cement Wapno Beton 13/75, 66-74 (2008).
  • 3. I. Hager, T. Tracz, Influence of elevated temperature on selected properties of high performance concrete modified with the addition of polypropylene fibers. Cement Wapno Beton 14/76, 3-9 (2009).
  • 4. T. Ponikiewski, G. Cygan, Some properties of self compacting concretes reinforced with steel fibres. Cement Wapno Beton 16/78, 203-209 (2011).
  • 5. T. Ponikiewski, G. Cygan, T. Kmita, Evaluation of homogenous distribution of steel fibres in the fine grained self compacting concrete with help of L-box test. Cement Wapno Beton 16/78, 3-9 (2011).
  • 6. M. Li, Z. Wu, W. Sun, C. Qian, Experimental study and mechanism analysis of restraining spalling of high strength concrete with polypropylene micro-fibers. Cement Wapno Beton 16/78, 129-138 (2011).
  • 7. J. Borucka-Lipska, W. Kiernożycki, Effect of dispersed reinforcement on the indirect interactions in massive concrete elements. Cement Wapno Beton 14/76, 34-41 (2009).
  • 8. R. D. Toledo Filho, K. Ghawami, M. A. Sanjuán, G. L. England, Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibers. Cement Concrete Composites 27, 537 - 546 (2005).
  • 9. F. de Andrade Silva, B. Mobasher, R. D. Toledo Filho, Cracking mechanism in durable sisal fiber reinforced cement composites. Cement Concrete Composites 31, 721-730 (2009).
  • 10. S. K. Handoo, S. Agarwal, S. K. Agarwal, Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cement Concrete Research 32, 1009-1018 (2002).
  • 11. Y. N. Chan, G. F. Peng, M. Anson, Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement Concrete Composites 21, 23-27 (1999).
  • 12. Y. F. Fu, Y. L, Wong, C. S. Poon, C. A. Tang, Numerical tests of thermal cracking induced by temperature gradient in cement-based composites under thermal loads. Cement Concrete Composites 29, 103-116 (2007).
  • 13. M. J. DeJong, F. J. Ulm, The nanogranular behavior of C-S-H at elevated temperatures (up to 700 °C). Cement and Concrete Research 37, 1-12 (2007).
  • 14. P. C. Aïtcin, The durability characteristics of high performance concrete: a review. Cement Concrete Composites 25, 409-420 (2003).
  • 15. P. J. E. Sullivan, A probabilistic method of testing for the assessment of the deterioration and explosive spalling of high strength concrete beams in flexure at high temperature. Cement Concrete Composites 26, 155-162 (2004).
  • 16. M. V. G. de Morais, P. Pliya, A. Noumowé, A. L. Beaucour, S. Ortola, Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature. Nuclear Engineering and Design 240, 2655-2663 (2010).
  • 17. Y. Fu, L. Li, Study on mechanism of thermal spalling in concrete exposed to elevated temperatures. Materials and Structures 44, 361-376 (2011).
  • 18. A. Bilodeau, V. K. R. Kodur, G. C. Hoff, Optimization of the type and amount of polypropylene fibers for preventing the spalling of lightweight concrete subjected to hydrocarbon fire. Cement Concrete Composites 26, 163 - 174 (2004).
  • 19. Y. S. Heo, J. G. Sanjayan, C. G. Han, M. C. Han, Synergistic effect of combined fibers for spalling protection of concrete in fire. Cement Concrete Research 40, 1547-1554 (2010).
  • 20. B. Georgali, P. E. Tsakiridis, Microstructure of fire-damaged concrete. A case study. Cement Concrete Composites 27, 255-259 (2005).
  • 21. J. C. Mindeguia, P. Pimienta, A. Noumowé, M. Kanema, Temperature, pore pressure and mass variation of concrete subjected to high temperature - experimental and numerical discussion on spalling risk. Cement Concrete Research 40, 477-487 (2010).
  • 22. JCPDS PDF-2 database, International Centre for Diffraction Data, Newtown Square, PA, U.S.A., release 54, 2004.
  • 23. ICSD database FIZ Karlsruhe, Germany, release 2010/2, 2010.
  • 24. M. K. Kumaran, Moisture Diffusivity of Building Materials from Water Absorption Measurements. Journal of Thermal Envelope and Building Science 22, 349-355 (1999).
  • 25. E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free Water Intake as Means of Material Characterization. Journal of Building Physics 33, 29-44 (2009).
  • 26. M. Castellote, C. Alonso, C. Andrade, X. Turrillas, J. Campo, Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cement and Concrete Research 34, 1633-1644 (2004).
  • 27. T. Maeshima, H. Noma, M. Sakiyama, T. Mitsuda, Natural 1.1 and 1.4 nm tobermorites from Fuka, Okayama, Japan: Chemical analysis, cell dimensions, 29Si NMR and thermal behavior. Cement and Concrete Research 33, 1515-1523 (2003).
  • 28. K. Yanagisawa, K. Zhu, A. Onda, K. Kajiyoshi, T. Kori, Q. Feng, Decrease of thermal shrinkage of tobermorite compacts at high temperatures by addition of gypsum. Journal of Society of Inorganic Materials, Japan 10, 363-369 (2003).
  • 29. G. A. Khoury, B. Willoughby, Polypropylene fibers in heated concrete. Part 1: Molecular structure and materials behaviour. Magazine of Concrete Research 60, 125-136 (2008).
  • 30. S. Y. N. Chan, X. Luo, W. Sun, Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Construction and Building Materials 14, 261-266 (2000).
  • 31. D. Gawin, C. Alonso, C. Andrade, C. E. Majorana, F. Pesavento, Effect of damage on permeability and hygro-thermal behaviour of high-performance concrete at elevated temperatures: Part 1. Experimental results. Computers and Concrete 2, 189-202 (2005).
  • 32. P. W. J. Glover, P. Baud, M. Darot, P. G. Meredith, S. A. Boon, M. Leravalec, S. Zoussi, T. Reuschle, Alpha/beta phase transition in quartz monitored by acoustic emissions. Geophysical Journal International 120, 775-782 (1995).
  • 33. D. Matesova, D. Bonen, S. P. Shah, Factors affecting the resistance of cementitious materials at high temperatures and medium heating rates. Materials and Structures 39, 455-469 (2006).
  • 34. V. Swamy, L. S. Dubrovinsky, Thermodynamic data for the phases in the CaSiO₃ system. Geochimica et Cosmochimica Acta 61, 1181-1191 (1997).
  • 35. J. Komonen, V. Penttala, Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes. Fire Technology 39, 23-34 (2003).
  • 36. W. Vichit-Vadakan, E. A. Kerr, Transport properties of fire-exposed concrete. Journal of Advanced Concrete Technology 7, 393-401 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB6-0004-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.