PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zarastanie rys w zaprawach cementowych z popiołem wapiennym zbrojonych rozproszonymi włóknami

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Self-healing of cracks in fibre reinforced mortar beams made with high calcium fly ash
Języki publikacji
PL
Abstrakty
PL
W przeprowadzonych badaniach wykonano próbki w kształcie beleczek z zaprawy uzbrojonej mikrowłóknami, przy różnym stopniu zastąpienia cementu przez popiół lotny wapienny. Przedstawiono wyniki mikroskopowej charakterystyki popiołu lotnego klasy C ze spalania węgla brunatnego. Analizę mikrostruktury zapraw przeprowadzono w mikroskopie optycznym oraz mikroskopie skaningowym. Badane beleczki były zginane aż do otwarcia rys i mikro rys, które podlegały zarastaniu po różnych okresach pielęgnacji. Uzyskane rezultaty wykazują, że zastąpienie cementu popiołem lotnym wapiennym wpływa na przebieg procesu samozarastania. Dodatek popiołu wapiennego, zarówno 30% jak i 60% przyspiesza proces samorzutnego zarastania rys, a zwłaszcza mikrorys. W badaniach nie stwierdzono przypadku całkowitego wypełnienia rys nowymi fazami, a jedynie udokumentowano początek takiego procesu. Stwierdzono także, że częściowe zastąpienie cementu przez popiół lotny wapienny zmniejsza stosunek S03/Al2O3 w zaprawie, stwarzając tym samym korzystne warunki do powstawania monosiarczanu.
EN
A series of mortar beams was cast with various content of high calcium fly ash as a partial replacement of Portland cement. The results of microstructural characterization of mortar containing fly ash class C (High Calcium Fly Ash) from combustion of lignite are presented. The evaluation ot the microstructure was performed using SEM and optical microscopy. The tested beams were bent till the crack and microcracks opening, which were healed during the different curing time. The results showed that the replacement of cement with fly ash class C influenced the process ot crack healing. The addition ot high calcium fly ash, at both 30% and 60%, speeds up the selt-healing process in cracks and particularly in micro-cracks. In the research the completely filling up of the eracks by new phases has not been observed, only the beginning of such process has been noticed. Additionally, it has been concluded that the partially replacement ot cement by high calcium fly ash decreased the ratio of SO3/Al2O3 in the mortar, owing to the fact that monosulfate could be created.
Czasopismo
Rocznik
Strony
38--49
Opis fizyczny
Bibliogr. 30 poz., il.
Twórcy
autor
  • Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk, Warszawa
Bibliografia
  • 1. D. A. Abrams, Effects of rate of application of load on the compressive strength of concrete, Amer. Soc. For Testing of Materials, Proc. 17, part II,364-77 (1917).
  • 2. D. J. Hannant, J. Edgington, Durability of steel fibre concrete, w: Proc. RILEM Symp. "Fibre reinforced cement and concrete", Lancaster; Construction Press, 159-169 (1975).
  • 3. D. J. Hannant, J. G. Keer, Autogeneous healing of thin cement based sheets. Cem. Concr. Res., 13, 533-538 (1983).
  • 4. R. J. Gray, Autogeneous healing of fibre/matrix interfacial bond in fibre- reinforced mortar. Cem. Concr. Res., 14, 315-317 (1984).
  • 5. W. Zamorowski, The phenomenon of self-regeneration of concrete. The Int. J. of Cem. Comp. Lightweight Concr., 7, 2,199-201 (1985).
  • 6. J. Kasperkiewicz, P. Stroeven, Observations on crack healing in concrete, in Proc. Int. Symp. "Brittle Matrix Composites 3" Warszawa, Appl. Sc. Publ., 164-173 (1991).
  • 7. S. Z. Qjan, J. Zhou, E. Schlangen, Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cem. Concr. Comp., 32, 686-693 (2010).
  • 8. A. Mor, P. J. M. Monteiro, W. T. Hetsre, Observations of healing of craeks in high-strength lightweight concrete. Cem. Concr. Aggr., 12, 2, 121-125 (1989).
  • 9. P. Schiessl, C. Reuter, Massgebende Einflussgrössen auf die Wasserdurchlässiqkeit von gerissenen Stahlbetonbauteilen. Ann. Report, Institüt für Bauforschung, Aachen, 223-228 (1992).
  • 10. S. Jacobsen, E. J. Sellevold, Self healing of high strength concrete after deterioration by freeze/thaw. Cem. Concr. Res., 26, 1, 55-62 (1996).
  • 11. C. Edvardsen, Water permeability and autogeneous healing of cracks in concrete. ACI. Mat. J., 96, 4, 448-454 (1999).
  • 12. H. W. Reinhardt, M. Jooss, Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem. Concr. Res., 33, 981-985 (2003).
  • 13. S. Granger, A. Loukili, G. Pijaudier-Cabot, M. Behloul, Self healing of cracks in concrete from model material to usual concretes, in: 2nd Int. Symp. on Advances in Concrete through Science and Engineering., Quebec City, RILEM (2006).
  • 14. M. Şahmaran. S. B. Keskin, G. Ozerkan, I. O. Yaman, Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cem. Concr. Comp., 30, 872-879 (2008).
  • 15. Wenhui Zhong, Wu Yao, Influence of damage degree on self-healing of concrete. Constr. Build. Mat., 22, 1137-114(2008).
  • 16. A. Hosoda, S. Komatsu, T. Ahn, T. Kishi, S. Ikeno, K. Kobayashi, Self healing properties with various crack widths under continuous water leakage, in: Concr. Repair, Rehab. and Retrofit., II, Alexander et al. eds., Taylor and Francis, 221-227, (2009).
  • 17. S. Granger, G. Pijaudier, A. Loukili, D. Marlot, J. C. Lenain, Monitoring of cracking and healing in an ultra high performance cementitious material using the time reversal technique. Cem. Concr. Res., 39, 296-302 (2009).
  • 18. A. M. Brandt, Cement-based Composites, 2nd ed. Taylor & Francis, 526, (2009).
  • 19. L. L. Kan, H. S. Shi, A. R. Sakulich, V.C. Li, Self-healing characterization of engineered cementitious composite materials. ACI Mat. J., Nov.-Dec. 617-624 (2010).
  • 20. Y. Yang, E. H. Yang, V. C. Li, Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res., 41, 176-183 (2011).
  • 21. A. R. Sakulich, V. C. Li, Microscopic characterization of autogenous healing products in engineered cementitious composites (ECC). 34th Int. Cont. on Cement Microscopy, San Francisco, Ca. USA, April 17-20, 10 (2011).
  • 22. E. Herbert, V. C. Li, Self-healing of engineered cementitious composites in the natural environment. Int. Workshop HPFRCC 6, Ann Arbor, MI, USA, June 19-22, 559 (2011).
  • 23. S. S. Bang, J. K. Galinat, V. Ramakrishnan, Calcite precipitation induced by polyurethaneimmobilized Bacillus pasteurii, Enzyme and Microbial Technology 28, 404-409 (2001).
  • 24. N. R. Sottos, M. R. Kessler, and S. R. White, Self-healing structural composite materials. Composites Part A: Applied Science and Manufacturing, 34 (8), 743-753 (2004).
  • 25. W. Ramm, M. Biscoping, Autogenous healing and reinforcement corrosion of waterpenetrated separation cracks in reinforced concrete, Journal of Nuclear Engineering and Design 179, 191-200 (1998).
  • 26. S. Tsimas, A. Moutsatsou-Tsima, High-calcium fly ash as the fourth constituent in concrete: problems, solutions and perspectives, Cem. Concr. Comp., 27, 231-237 (2005).
  • 27. S. Diamond, On the glass present in low-Ca and high-Ca fly ash, Cem. Conr. Res., Vol. 12, 459-464 (1983).
  • 28. J. K. Tishmack, J. Olek, S. Diamond, S. Sahu, Characterization of pore solutians expressed from high-calcium fly-ash-water pastes, Fuel, 80, Issue 6, 815-819 (2001).
  • 29. J. Tishmack, J. Olek, S. Diamond, Characterization of High-Calcium Fly Ashes and Their Potential Influence on Ettringite Formation in Cementitious Systems, Cem., Concr. Aggreg., 21, Issue 1, 82-92 (1999).
  • 30. S. Diamond, The microstructure of cement paste and concrete - a visual primer, Cem. Concr. Comp., 26, 919-933 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB6-0002-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.