Efekty sprzężenia parcia statycznego i pól temperatury w żelbetowych silosach na gorący ośrodek sypki

Dr inż. Jolanta Anna Prusiel, mgr inż. Katarzyna Tomczuk, Politechnika Białostocka

1. Oddziaływania termiczne w silosach na gorący ośrodek sypki

Oddziaływania termiczne w silosach są istotnym obciążeniem zmiennym, zwłaszcza w silosach na gorący ośrodek sypki typu cement czy klinkier cementowy. Określenie rzeczywistych rozkładów temperatury w ścianie i gorącym środku sypkim w eksploatowanych silosach jest zagadnieniem złożonym. W Polsce badania doświadczalne w zakresie rozkładów pól temperatury w silosach na gorący ośrodek sypki były prowadzone przez Banacha i Borcza oraz Maja i Trochanowskiego [3, 4]. Zagranicą badania w tym zakresie prowadzili m.in. Blight [5], a także Ogniwek [6]. Podczas badania przeprowadzonego przez Ogniwka temperatura zasypywanego klinkieru wahała się w granicach 100-200°C. Różnica temperatury pomiędzy wewnętrzną, a zewnętrzną powierzchnią ściany wynosiła 20°C. Ogniwek analizował również rozkład temperatury klinkieru w zależności od poziomu napełnienia.

Zgodnie z postanowieniami normy PN-EN 1991-4 [1], przy projektowaniu konstrukcji silosu należy wziąć pod uwagę efekty termiczne (naprężenia, siły i momenty, przemieszczenia, odkształcenia) spowodowane różnicą temperatury pomiędzy składowanym ośrodkiem sypkim i konstrukcją silosu oraz między środowiskiem otoczenia i konstrukcją silosu. W przypadku napełniania gorącym ośrodkiem, należy uwzględnić różnicę temperatury pomiędzy chłodniejszym ośrodkiem, znajdującym się już przez pewien czas w silosie, a gorącym powietrzem powyżej powierzchni ośrodka. Również istotnym zaleceniem normy jest konieczność uwzględnienia dodatkowego parcia termicznego wywołanego znacznym ochłodzeniem ściany w krótkim czasie przy wypełnionej komorze silosu. Do celów projektowych warunki termiczne należy ustalać na podstawie normy PN-EN 1991–1–5 [2]. Temperaturę materiału sypkiego składowanego w silosie należy przyjmować na podstawie założeń technologicznych.

W celu przeanalizowania sprzężenia efektów termicznych i parcia statycznego ośrodka w silosie, wykonano wielowariantową analizę. W dalszej części artykułu przedstawiono wyniki obliczeń żelbetowego silosu o wysokości 25 m i trzech różnych średnicach wewnętrznych (6 m, 8 m, 10 m) wypełnionego gorącym klinkierem cementowym o temperaturze: T=80°C, T=90°C, T=100°C i T=110°C. Ścianę silosu o grubości h_s =0,20 m wykonano z betonu C30/37.

1.1. Rozkład temperatury w ścianie komory silosu Rozkład pól temperatury w ścianie silosu wypełnionego gorącym klinkierem cementowym o temperaturze T=80°C, T=90°C, T=100°C i T=110°C wyznaczono na podstawie normy PN-EN 1991–1–5 wg Załącznika D [2]. Rozkład temperatury w powłoce określono, stosując teorię przewodności cieplnej. Temperaturę T(x) na odcinku x od wewnętrznej powierzchni przekroju, przy założeniu ustalonego stanu termicznego wyznaczono ze wzoru:

$$T(x) = T_{in} - \frac{R(x)}{R_{tot}} \cdot (T_{in} - T_{out})$$
(1.1)

gdzie:

 T_{in} – temperatura powietrza środowiska wewnętrznego, T_{out} – temperatura środowiska zewnętrznego,

R_{tot} – całkowity opór cieplny elementu z uwzględnieniem oporu obu powierzchni,

R(x) – opór cieplny na powierzchni wewnętrznej i elementu od powierzchni wewnętrznej powyżej punktu x (rys. 1).

Całkowity opór cieplny ściany silosu oraz opór cieplny na jej powierzchni wewnętrznej określono ze wzorów:

$$R_{tot} = R_{in} + \sum_{i} \frac{h_i}{\lambda_i} + R_{out}$$
(1.2)

$$R(x) = R_{in} + \sum_{i} \frac{h_i}{\lambda_i}$$
(1.3)

ARTYKUŁY

a) bez warstwy przyściennej ośrodka

b) z uwzględnieniem warstwy przyściennej ośrodka

Rys. 1. Schemat rozkładu temperatury w żelbetowej ścianie silosu

gdzie:

 R_{in} – opór przejmowania ciepła na powierzchni wewnętrznej [m²K/W],

R_{out} – opór przejmowania ciepła na powierzchni zewnętrznej [m²K/W],

h, – grubość warstwy i [m],

 λ_i – współczynnik przewodzenia ciepła; dla betonu przyjęto λ =1,71 [W/mK] [2]; dla klinkieru wynosi λ = 0,16 [W/mK] według [4].

Temperaturę zewnętrzną T_{out} ustalono dla miejscowości Białystok na podstawie Załącznika krajowego NB (rys. NB.2 i rys. NB.3) normy [2]. Obliczenia wykonano dla warunków letnich i zimowych. Zastosowano procedurę korekcyjną i wyznaczono temperaturę na poziomie usytuowania obiektu (Białystok – 160 m n.p.m.):

$$T_{out}^{\max(H)} = -0,0053 \frac{{}^{o}C}{m} \cdot H + T_{out}^{\max} =$$

= -0,0053 $\frac{{}^{o}C}{m} \cdot 160m + 37^{o}C = 36,15^{o}C$ (1.4)

$$T_{out}^{\min(H)} = -0,0035 \frac{{}^{o}C}{m} \cdot H + T_{out}^{\min} =$$

= -0,0035 $\frac{{}^{o}C}{m} \cdot 160m - 32^{o}C = -32,56^{o}C$ (1.5)

Tabela 1. Wartości temperatury w poszczególnych punktach ściany bez uwzględniania warstwy przyściennej ośrodka sypkiego dla warunków zimowych

	T(1) [ºC]	T(2) [°C]	∆ T [ºC]
	29,01	-16,87	45,88
T=90°C	34,48	-15,48	49,95
T=100°C	39,95	-14,08	54,03
T=110°C	45,42	-12,69	58,10

Wartości oporów przejmowania ciepła ustalono na podstawie PN EN ISO 6946 [8] dla poziomego kierunku strumienia ciepła: $R_{in} = 0,13 \text{ [m}^2\text{K/W]} \text{ i } R_{out} = 0,04 \text{ [m}^2\text{K/W]}.$

W artykule wyznaczono temperaturę na zewnętrznej i wewnętrznej powierzchni ściany silosu w dwóch wariantach, tj. dla betonowej ściany oraz ściany z uwzględnieniem warstwy przyściennej ośrodka sypkiego (rys. 1). Polska norma silosowa PN-B-03262:2002 [9] określa grubość warstwy przyściennej, biorącej udział w przewodzeniu ciepła (tłumienie strumienia ciepła) w zależności od rodzaju ośrodka sypkiego: dla drobnoziarnistych i sproszkowanych materiałów sypkich – 20 cm, dla ziarnistych ośrodków sypkich – 12 cm. Na tej podstawie dla klinkieru cementowego przyjęto grubość warstwy przyściennej tłumiącej 20 cm.

W tabeli 1 i 2 zamieszczono wyznaczoną temperaturę na zewnętrznej i wewnętrznej powierzchni ściany oraz obliczony gradient temperatury na grubości ściany silosu dla warunków zimowych (oznaczenia T(1), T(2) i T(3) wg rys. 1). Obliczone rozkłady pól temperatury dla zimy przyjęto do analizy numerycznej silosu wypełnionego klinkierem cementowym.

Tabela 2. Wartości temperatury w poszczególnych punktach ściany z uwzględnieniem warstwy przyściennej ośrodka sypkiego dla warunków zimowych

	T(1) [ºC]	T(2) [°C]	T(2) [°C] T(3) [°C]	
T=80°C	70,48	-21,07	-29,63	8,57
T=90°C	75,67	-20,04	-29,37	9,33
T=100°C	84,50	-19,02	-29,11	10,09
T=110°C	93,33	-18,00	-28,85	10,85

1.2. Parcie termiczne w silosie wywołane spadkiem temperatury otoczenia

W przypadku gdy w otoczeniu silosu nastąpi spadek temperatury w krótkim czasie, to na skutek termicznego skrócenia powłoki i mało podatnej na zmiany temperatury masy składowanego ośrodka, wystąpi w komorze silosu parcie termiczne p_{hT} Jest to dodatkowe parcie normalne działające na pionową ścianę silosu, które należy uwzględnić przy projektowaniu konstrukcji silosu. W analizowanym przykładzie cylindrycznego silosu na gorący klinkier wartość parcia termicznego p_{hT} określono ze wzoru [1]:

$$p_{hT} = C_T \cdot \alpha_w \cdot T_{sr} \cdot \frac{E_w}{\left[\left(r/t \right) + \left(1 - \nu \right) \left(E_w/E_{sU} \right) \right]}$$
(1.6)

gdzie:

 C_{T} – współczynnik obciążenia temperaturą; przyjęto C_{T} = 3 – dla efektywnego modułu sprężystości przy obciążeniu oszacowanym na podstawie gęstości ośrodka [1];

 $\alpha_{\rm w}$ – współczynnik termicznej rozszerzalności ściany silosu; przyjęto $\alpha_{\rm w}\!=\!1\!\cdot\!10^{-5}~[1/^{0}C];$

T_{śr} – równomierne ochłodzenie ściany silosu,

r - promień komory silosu,

t – grubość ściany,

 ν – współczynnik Poissona ośrodka rozdrobnionego; przyjęto ν =0,3;

E_w – moduł sprężystości materiału ściany silosu,

 $E_{sU}^{"}$ – efektywny moduł sprężystości ośrodka przy obciążeniu, na głębokości z; wartość efektywnego modułu sprężystości ośrodka oszacowano w sposób pośredni wg [1].

W tabeli 3 zamieszczono obliczeniowe wartości parcia termicznego p_{hT} i sił równoleżnikowych N_T wyznaczone dla rozkładów temperatury w ścianie z uwzględnieniem warstwy przyściennej ośrodka sypkiego w komorze silosu w warunkach zimowych. Do wyznaczenia dodatkowego parcia termicznego w silosie założono w uproszczeniu liniową zmienność spadków temperatury na grubości ściany w zadaniu osiowo-symetrycznym. Siłę równoleżnikową w cylindrycznej ścianie silosu wywołaną równomiernym parciem normalnym p_{hT} obliczono na podstawie klasycznej zależności z teorii błonowej powłok.

2. Analiza numeryczna sprzężonych oddziaływań statycznych i termicznych w cylindrycznym silosie

2.1. Założenia do obliczeń

Obliczenia numeryczne przeprowadzono dla żelbetowego silosu cylindrycznego wolno stojącego o wysokości H=25,0 m i trzech różnych średnicach wewnętrznych: d_c=6,0 m, d_c=8,0 m, d_c=10,0 m. Grubość ściany silosu przyjęto: h_s=0,20m. Obliczane silosy spełniały warunek h_c/d_c \ge 2,0, co oznacza, że obciążenia od parcia ośrodka sypkiego w fazie napełniania wyznaczono jak dla silosów smukłych zgodnie z normą PN-EN 1991–4 [1]. Właściwości klinkieru niezbędne do wyznaczenia parcia statycznego w silosie wg teorii Janssena [1] podano w tabeli 4.

Cylindryczną komorę silosu poddano następującym wariantom obciążenia:

 obciążenie statyczne od parcia ośrodka sypkiego (symbol J),

Tabela 3. Wartości parcia termicznego $p_{h\tau}$ i sił równoleżnikowych N_{τ} w komorze silosu na klinkier cementowy

Temperatura klinkieru	T=80°C		T=90°C		T=100°C		T=110°C	
Średnica silosu [m]	р _{hт} [kN/m²]	N _T [kN/m]	р _{hт} [kN/m²]	N _T [kN/m]	р _{һт} [kN/m²]	N _T [kN/m]	р _{hт} [kN/m²]	N _T [kN/m]
$d_{c} = 6,00$	74,23	222,69	72,35	217,06	70,48	211,44	68,60	205,81
d _c =8,00	88,68	354,74	86,44	345,77	84,20	336,80	81,96	327,84
d _c =10,00	98,16	490,79	95,68	478,38	93,19	465,97	90,71	453,57

Tabela 4. Właściwości klinkieru cementowego wyznaczone wg PN-EN 1991-4 [1]

Właściwości klinkieru cementowego	Współczynnik zamiany	Wartość średnia	Wartość górna	Wartość dolna
Kąt tarcia wewnętrznego $\phi_i[^\circ]$	$a_{\phi} = 1,20$	40	48,0	33,3
lloraz parcia bocznego K	$a_{\kappa} = 1,31$	0,38	0,50	0,29
Współczynnik tarcia o ścianę μ (dla ściany typu D3)	<i>a</i> ₀ = 1,07	0,62	0,66	0,58
Ciężar jednostkowy γ [kN/m ³]			18,0	15,0
Kąt stoku naturalnego $\phi_r = 47$ [°]				

a) dyskretyzacja modelu numerycznego silosu

b) siła równoleżnikowa Nθ [kN/m]

Rys. 2. Model obliczeniowy silosu i wykresy sił równoleżnikowych w ścianie silosu na klinkier cementowy o temp. $T=100^{\circ}$ C od parcia ośrodka sypkiego (J) oraz parcia sprzężonego z polem temperatury ($J+T_{2}$)

• obciążenie statyczne od parcia ośrodka sypkiego sprzężonego ze spadkiem temperatury bez uwzględniania warstwy tłumiącej ośrodka sypkiego (symbol $J+T_1$),

 obciążenie statyczne od parcia ośrodka sypkiego sprzężonego z spadkiem temperatury z uwzględnieniem warstwy tłumiącej ośrodka sypkiego (symbol J+T₂).

Łącznie wykonano 36 wariantów testów obliczeniowych. Przyjęte do obliczeń numerycznych rozkłady pól temperatury w ścianie komory i ośrodku sypkim dla czterech zakresów temperatury klinkieru cementowego (T=80°C, T=90°C, T=100°C i T=110°C) w warunkach zimowych omówiono w rozdziale "1" artykułu.

2.2. Analiza jakościowa i ilościowa wyników obliczeń Siły wewnętrzne w komorze silosu wyznaczono przy użyciu programu numerycznego Autodesk Robot Structural Analysis Professional 2011. Konstrukcję silosu zamodelowano używając modułu "projektowanie powłoki" w programie MES. Ściany komory silosu zamodelowano z 25 pierścieni wysokości 1,00 m i grubości 20 cm. Tworząc poszczególne panele dokonano podziału boku na 2 części oraz dyskretyzacji okręgu na 36 elementów dla d_c=6,00 m, 48 elementów dla d_c=8,00 m i 60 elementów dla d_c=10,00 m. W ten sposób uzyskano elementy skończone o wymiarach 0,50 m x 0,52 m. Modelowanie leja silosu (kąt nachylenia ścian leja – α =60°) wykonano przy użyciu opcji stożka ściętego ze stopniowaniem co 0,50m. Konstrukcję wsporczą silosu stanowi przedłużona ściana walcowa zamocowana w sposób sztywny w fundamencie (rys. 2a).

Na rysunku 2b przedstawiono wykresy sił równoleżnikowych N_{θ} dla komór o promieniu 3 m, 4 m i 5 m wypełnionych klinkierem cementowym o temperaturze

Tabela 5. Wartości momentów równoleżnikowych $M_{_{\theta}}$ i południkowych $M_{_z}$ oraz sił równoleżnikowych $N_{_{\theta}}$ w wybranym przekroju silosu o średnicy $d_{_c}$ =8,0 m dla różnych temperatur klinkieru

Poziom h/H=0,52	Średnica silosu [m]	Temperatura klinkieru	M _e [kNm/m]		M _z [kNm/m]		N _e [kNm/m]	
			J+T ₁	J+T ₂	J+T ₁	J+T ₂	J	J+T ₂
	8,00	80ºC	61,64	11,90	61,17	11,42	292,95	647,69
		90°C	67,07	12,91	66,60	12,44		638,72
		100ºC	72,51	13,92	72,04	13,45		629,75
		110ºC	77,94	14,94	77,46	14,46		620,79

П

Þ

Rys. 3. Nomogram do określania przyrostu siły równoleżnikowej od parcia termicznego w żelbetowej ścianie silosu na gorący klinkier cementowy o temperaturze T=100°C

T=100°C. Wartości sił równoleżnikowych zostały obliczone od parcia statycznego (J) oraz parcia sprzężonego z polem temperatury wyznaczonym z uwzględnieniem przyściennej warstwy tłumiącej materiału sypkiego (J+T₂).

Porównawczą analizę ilościową wybranych wyników testów numerycznych zawarto w tabeli 5. Zestawiono tu wartości momentów równoleżnikowych M_{θ} i południkowych M_{z} oraz sił równoleżnikowych N_{θ} obliczone w ścianie silosu o średnicy d_{c} =8,0 m dla różnej temperatury klinkieru. Widać wyraźnie wpływ uwzględnienia warstwy przyściennej ośrodka sypkiego (J+T₂) na zmniejszenie momentów zginających w ścianie wywołanych gradientem temperatury. Z kolei z porównania sił równoleżnikowych N_{θ} wynika, że spadek temperatury otoczenia zimą spowodował przyrost sił w ścianie komory średnio o 115% w stosunku do sił od parcia statycznego wg Janssena.

Na podstawie przeprowadzonych testów numerycznych opracowano nomogramy służące do wyznaczania przyrostów siły równoleżnikowej N_e wywołanych efektem sprzężenia parcia statycznego i dodatkowego parcia termicznego w stosunku do sił pochodzących od parcia Janssena w ścianie silosu na gorący klinkier cementowy o określonej temperaturze. W celu obliczenia zwiększonej siły równoleżnikowej w ścianie komory zaproponowano zależność:

$$N_{\theta}^{J+T} = (1+\beta) \cdot N_{\theta}^{J}$$
(1.7)

gdzie:

 N_{θ}^{J+T} – siła równoleżnikowa uwzględniająca efekt spadku temperatury w ścianie powłoki;

 N_{θ}^{J} – siła równoleżnikowa obliczona od parcia statycznego ośrodka sypkiego wyznaczonego według teorii Janssena;

 β – współczynnik wpływu dodatkowego parcia termicznego, uwzględniający interakcję ściany powłoki i ośrodka sypkiego (rys. 3).

Przykładowy nomogram pokazany na rysunku 3 może być wykorzystany dla komór silosów o wysokości 25 m i średnicy od 6 do 10 m oraz grubości ściany 0,20 m, przeznaczonych do przechowywania klinkieru cementowego o temperaturze T=100°C. Na podstawie nomogramu można stwierdzić, że w silosie o średnicy d_c=10,0 m przyrost siły równoleżnikowej N_θ spowodowany dodatkowym parciem termicznym w stosunku do siły od parcia wg Janssena wynosi 110% w przekroju h/H=0,52 i około 80% w przekroju h/H=0,88.

3. Podsumowanie

Na podstawie przeprowadzonej analizy numerycznej sprzężonych oddziaływań statycznych i termicznych w żelbetowych silosach na gorący klinkier cementowy można stwierdzić, że uwzględnienie w obliczeniach izolacyjnych właściwości warstwy kontaktowej ośrodka powoduje znaczące zmniejszenie gradientu temperatury na grubości ściany, co z kolei wpływa na wartości momentów zginających w komorze. Aktualny Eurokod 1, część 4 [1] nie wypowiada się w tej kwestii. A zatem istotne i odpowiedzialne ze strony projektanta jest prawidłowe przyjęcie grubości warstwy przyściennej, na której zachodzi tłumienie strumienia ciepła. Zaproponowany w artykule nomogram może posłużyć w praktyce projektowej do oszacowania przyrostu siły równoleżnikowej od dodatkowego parcia termicznego w ścianie cylindrycznego silosu na gorący ośrodek sypki.

BIBLIOGRAFIA

 [1] PN-EN 1991–4:2008 Eurokod 1. Oddziaływania na konstrukcje. Część 4: Silosy i zbiorniki

[2] PN-EN 1991–1–5:2005 Eurokod 1. Oddziaływania na konstrukcje. Część 1–5: Oddziaływania ogólne – Oddziaływania termiczne

[3] Borcz A., Silosy w przemyśle materiałów wiążących. Wydawnictwo Politechniki Wrocławskiej, Wrocław 1987

[4] Borcz A., Maj M., Trochanowski A., Wytyczne projektowania, budowy i użytkowania silosów żelbetowych. Prace Naukowe Instytutu Budownictwa Politechniki Wrocławskiej, Z. nr 61, Wrocław, 1991, s. 66
[5] Blight G.E., Halmagiu A.R., Fliss L., Measured Pressures,

Temperatures and Strains in a 41 m Reinforced Concrete Tank Storing Hot Cement Clinker. Bulk Solids Handling, Vol. 17, No. 2, 1997, s. 235–243

[6] Hampe E., Silos. Band 1 Grundlagen, VEB Verlag fur Bauwesen, Berlin 1987

[7] Kobiak J., Stachurski W., Konstrukcje żelbetowe. Tom IV. Arkady, Warszawa 1991

[8] PN-EN ISO 6946:2008 Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania

[9] PN-B-03262:2002 Silosy żelbetowe na materiały sypkie. Obliczenia statyczne, projektowanie, wykonawstwo i eksploatacja